Metamath Proof Explorer


Theorem intmin3

Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005)

Ref Expression
Hypotheses intmin3.2 x=Aφψ
intmin3.3 ψ
Assertion intmin3 AVx|φA

Proof

Step Hyp Ref Expression
1 intmin3.2 x=Aφψ
2 intmin3.3 ψ
3 1 elabg AVAx|φψ
4 2 3 mpbiri AVAx|φ
5 intss1 Ax|φx|φA
6 4 5 syl AVx|φA