Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
intmin4
Next ⟩
intab
Metamath Proof Explorer
Ascii
Unicode
Theorem
intmin4
Description:
Elimination of a conjunct in a class intersection.
(Contributed by
NM
, 31-Jul-2006)
Ref
Expression
Assertion
intmin4
⊢
A
⊆
⋂
x
|
φ
→
⋂
x
|
A
⊆
x
∧
φ
=
⋂
x
|
φ
Proof
Step
Hyp
Ref
Expression
1
ssintab
⊢
A
⊆
⋂
x
|
φ
↔
∀
x
φ
→
A
⊆
x
2
simpr
⊢
A
⊆
x
∧
φ
→
φ
3
ancr
⊢
φ
→
A
⊆
x
→
φ
→
A
⊆
x
∧
φ
4
2
3
impbid2
⊢
φ
→
A
⊆
x
→
A
⊆
x
∧
φ
↔
φ
5
4
imbi1d
⊢
φ
→
A
⊆
x
→
A
⊆
x
∧
φ
→
y
∈
x
↔
φ
→
y
∈
x
6
5
alimi
⊢
∀
x
φ
→
A
⊆
x
→
∀
x
A
⊆
x
∧
φ
→
y
∈
x
↔
φ
→
y
∈
x
7
albi
⊢
∀
x
A
⊆
x
∧
φ
→
y
∈
x
↔
φ
→
y
∈
x
→
∀
x
A
⊆
x
∧
φ
→
y
∈
x
↔
∀
x
φ
→
y
∈
x
8
6
7
syl
⊢
∀
x
φ
→
A
⊆
x
→
∀
x
A
⊆
x
∧
φ
→
y
∈
x
↔
∀
x
φ
→
y
∈
x
9
1
8
sylbi
⊢
A
⊆
⋂
x
|
φ
→
∀
x
A
⊆
x
∧
φ
→
y
∈
x
↔
∀
x
φ
→
y
∈
x
10
vex
⊢
y
∈
V
11
10
elintab
⊢
y
∈
⋂
x
|
A
⊆
x
∧
φ
↔
∀
x
A
⊆
x
∧
φ
→
y
∈
x
12
10
elintab
⊢
y
∈
⋂
x
|
φ
↔
∀
x
φ
→
y
∈
x
13
9
11
12
3bitr4g
⊢
A
⊆
⋂
x
|
φ
→
y
∈
⋂
x
|
A
⊆
x
∧
φ
↔
y
∈
⋂
x
|
φ
14
13
eqrdv
⊢
A
⊆
⋂
x
|
φ
→
⋂
x
|
A
⊆
x
∧
φ
=
⋂
x
|
φ