Metamath Proof Explorer


Theorem intmin4

Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006)

Ref Expression
Assertion intmin4 ( 𝐴 { 𝑥𝜑 } → { 𝑥 ∣ ( 𝐴𝑥𝜑 ) } = { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 ssintab ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) )
2 simpr ( ( 𝐴𝑥𝜑 ) → 𝜑 )
3 ancr ( ( 𝜑𝐴𝑥 ) → ( 𝜑 → ( 𝐴𝑥𝜑 ) ) )
4 2 3 impbid2 ( ( 𝜑𝐴𝑥 ) → ( ( 𝐴𝑥𝜑 ) ↔ 𝜑 ) )
5 4 imbi1d ( ( 𝜑𝐴𝑥 ) → ( ( ( 𝐴𝑥𝜑 ) → 𝑦𝑥 ) ↔ ( 𝜑𝑦𝑥 ) ) )
6 5 alimi ( ∀ 𝑥 ( 𝜑𝐴𝑥 ) → ∀ 𝑥 ( ( ( 𝐴𝑥𝜑 ) → 𝑦𝑥 ) ↔ ( 𝜑𝑦𝑥 ) ) )
7 albi ( ∀ 𝑥 ( ( ( 𝐴𝑥𝜑 ) → 𝑦𝑥 ) ↔ ( 𝜑𝑦𝑥 ) ) → ( ∀ 𝑥 ( ( 𝐴𝑥𝜑 ) → 𝑦𝑥 ) ↔ ∀ 𝑥 ( 𝜑𝑦𝑥 ) ) )
8 6 7 syl ( ∀ 𝑥 ( 𝜑𝐴𝑥 ) → ( ∀ 𝑥 ( ( 𝐴𝑥𝜑 ) → 𝑦𝑥 ) ↔ ∀ 𝑥 ( 𝜑𝑦𝑥 ) ) )
9 1 8 sylbi ( 𝐴 { 𝑥𝜑 } → ( ∀ 𝑥 ( ( 𝐴𝑥𝜑 ) → 𝑦𝑥 ) ↔ ∀ 𝑥 ( 𝜑𝑦𝑥 ) ) )
10 vex 𝑦 ∈ V
11 10 elintab ( 𝑦 { 𝑥 ∣ ( 𝐴𝑥𝜑 ) } ↔ ∀ 𝑥 ( ( 𝐴𝑥𝜑 ) → 𝑦𝑥 ) )
12 10 elintab ( 𝑦 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝑦𝑥 ) )
13 9 11 12 3bitr4g ( 𝐴 { 𝑥𝜑 } → ( 𝑦 { 𝑥 ∣ ( 𝐴𝑥𝜑 ) } ↔ 𝑦 { 𝑥𝜑 } ) )
14 13 eqrdv ( 𝐴 { 𝑥𝜑 } → { 𝑥 ∣ ( 𝐴𝑥𝜑 ) } = { 𝑥𝜑 } )