Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The intersection of a class intminss  
				
		 
		
			
		 
		Description:   Under subset ordering, the intersection of a restricted class
       abstraction is less than or equal to any of its members.  (Contributed by NM , 7-Sep-2013) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						intminss.1    ⊢   x  =  A    →    φ   ↔   ψ         
					 
				
					Assertion 
					intminss    ⊢    A  ∈  B    ∧   ψ    →    ⋂   x  ∈  B  |   φ       ⊆  A         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							intminss.1   ⊢   x  =  A    →    φ   ↔   ψ         
						
							2 
								1 
							 
							elrab   ⊢   A  ∈   x  ∈  B  |   φ       ↔    A  ∈  B    ∧   ψ         
						
							3 
								
							 
							intss1   ⊢   A  ∈   x  ∈  B  |   φ       →    ⋂   x  ∈  B  |   φ       ⊆  A         
						
							4 
								2  3 
							 
							sylbir   ⊢    A  ∈  B    ∧   ψ    →    ⋂   x  ∈  B  |   φ       ⊆  A