Metamath Proof Explorer


Theorem inviso1

Description: If G is an inverse to F , then F is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses invfval.b B = Base C
invfval.n N = Inv C
invfval.c φ C Cat
invfval.x φ X B
invfval.y φ Y B
isoval.n I = Iso C
inviso1.1 φ F X N Y G
Assertion inviso1 φ F X I Y

Proof

Step Hyp Ref Expression
1 invfval.b B = Base C
2 invfval.n N = Inv C
3 invfval.c φ C Cat
4 invfval.x φ X B
5 invfval.y φ Y B
6 isoval.n I = Iso C
7 inviso1.1 φ F X N Y G
8 1 2 3 4 5 invfun φ Fun X N Y
9 funrel Fun X N Y Rel X N Y
10 8 9 syl φ Rel X N Y
11 releldm Rel X N Y F X N Y G F dom X N Y
12 10 7 11 syl2anc φ F dom X N Y
13 1 2 3 4 5 6 isoval φ X I Y = dom X N Y
14 12 13 eleqtrrd φ F X I Y