Description: The interior of an interval in the standard topology on RR is the open interval itself. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ioontr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooretop | |
|
2 | retop | |
|
3 | ioossre | |
|
4 | uniretop | |
|
5 | 4 | isopn3 | |
6 | 2 3 5 | mp2an | |
7 | 1 6 | mpbi | |