Metamath Proof Explorer


Theorem iotasbcq

Description: Theorem *14.272 in WhiteheadRussell p. 193. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotasbcq xφψ[˙ιx|φ/y]˙χ[˙ιx|ψ/y]˙χ

Proof

Step Hyp Ref Expression
1 iotabi xφψιx|φ=ιx|ψ
2 1 sbceq1d xφψ[˙ιx|φ/y]˙χ[˙ιx|ψ/y]˙χ