Metamath Proof Explorer


Theorem ipsvsca

Description: The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
Assertion ipsvsca ·˙V·˙=A

Proof

Step Hyp Ref Expression
1 ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
2 1 ipsstr AStruct18
3 vscaid 𝑠=Slotndx
4 snsstp2 ndx·˙ScalarndxSndx·˙𝑖ndxI
5 ssun2 ScalarndxSndx·˙𝑖ndxIBasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
6 5 1 sseqtrri ScalarndxSndx·˙𝑖ndxIA
7 4 6 sstri ndx·˙A
8 2 3 7 strfv ·˙V·˙=A