Metamath Proof Explorer


Theorem isdmn

Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion isdmn RDmnRPrRingRCom2

Proof

Step Hyp Ref Expression
1 df-dmn Dmn=PrRingCom2
2 1 elin2 RDmnRPrRingRCom2