Metamath Proof Explorer


Theorem isghm3

Description: Property of a group homomorphism, similar to ismhm . (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses isghm.w X=BaseS
isghm.x Y=BaseT
isghm.a +˙=+S
isghm.b ˙=+T
Assertion isghm3 SGrpTGrpFSGrpHomTF:XYuXvXFu+˙v=Fu˙Fv

Proof

Step Hyp Ref Expression
1 isghm.w X=BaseS
2 isghm.x Y=BaseT
3 isghm.a +˙=+S
4 isghm.b ˙=+T
5 1 2 3 4 isghm FSGrpHomTSGrpTGrpF:XYuXvXFu+˙v=Fu˙Fv
6 5 baib SGrpTGrpFSGrpHomTF:XYuXvXFu+˙v=Fu˙Fv