Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Sections, inverses, isomorphisms
isinv2
Next ⟩
isisod
Metamath Proof Explorer
Ascii
Unicode
Theorem
isinv2
Description:
The property "
F
is an inverse of
G
".
(Contributed by
Zhi Wang
, 14-Nov-2025)
Ref
Expression
Hypotheses
isinv2.n
⊢
N
=
Inv
⁡
C
isinv2.s
⊢
S
=
Sect
⁡
C
Assertion
isinv2
⊢
F
X
N
Y
G
↔
F
X
S
Y
G
∧
G
Y
S
X
F
Proof
Step
Hyp
Ref
Expression
1
isinv2.n
⊢
N
=
Inv
⁡
C
2
isinv2.s
⊢
S
=
Sect
⁡
C
3
id
⊢
F
X
N
Y
G
→
F
X
N
Y
G
4
1
3
invrcl
⊢
F
X
N
Y
G
→
C
∈
Cat
5
eqid
⊢
Base
C
=
Base
C
6
1
3
5
invrcl2
⊢
F
X
N
Y
G
→
X
∈
Base
C
∧
Y
∈
Base
C
7
4
6
jca
⊢
F
X
N
Y
G
→
C
∈
Cat
∧
X
∈
Base
C
∧
Y
∈
Base
C
8
simpl
⊢
F
X
S
Y
G
∧
G
Y
S
X
F
→
F
X
S
Y
G
9
2
8
sectrcl
⊢
F
X
S
Y
G
∧
G
Y
S
X
F
→
C
∈
Cat
10
2
8
5
sectrcl2
⊢
F
X
S
Y
G
∧
G
Y
S
X
F
→
X
∈
Base
C
∧
Y
∈
Base
C
11
9
10
jca
⊢
F
X
S
Y
G
∧
G
Y
S
X
F
→
C
∈
Cat
∧
X
∈
Base
C
∧
Y
∈
Base
C
12
simpl
⊢
C
∈
Cat
∧
X
∈
Base
C
∧
Y
∈
Base
C
→
C
∈
Cat
13
simprl
⊢
C
∈
Cat
∧
X
∈
Base
C
∧
Y
∈
Base
C
→
X
∈
Base
C
14
simprr
⊢
C
∈
Cat
∧
X
∈
Base
C
∧
Y
∈
Base
C
→
Y
∈
Base
C
15
5
1
12
13
14
2
isinv
⊢
C
∈
Cat
∧
X
∈
Base
C
∧
Y
∈
Base
C
→
F
X
N
Y
G
↔
F
X
S
Y
G
∧
G
Y
S
X
F
16
7
11
15
pm5.21nii
⊢
F
X
N
Y
G
↔
F
X
S
Y
G
∧
G
Y
S
X
F