| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinv2.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 2 |
|
isinv2.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
| 3 |
|
id |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |
| 4 |
1 3
|
invrcl |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝐶 ∈ Cat ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 6 |
1 3 5
|
invrcl2 |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 |
4 6
|
jca |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
| 9 |
2 8
|
sectrcl |
⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → 𝐶 ∈ Cat ) |
| 10 |
2 8 5
|
sectrcl2 |
⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 11 |
9 10
|
jca |
⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 12 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 13 |
|
simprl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 14 |
|
simprr |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 15 |
5 1 12 13 14 2
|
isinv |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
| 16 |
7 11 15
|
pm5.21nii |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |