| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectrcl.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
| 2 |
|
sectrcl.f |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
| 3 |
|
sectrcl2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
df-br |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑆 𝑌 ) ) |
| 5 |
2 4
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑆 𝑌 ) ) |
| 6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 8 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 9 |
1 2
|
sectrcl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 |
3 6 7 8 1 9
|
sectffval |
⊢ ( 𝜑 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) ) |
| 11 |
10
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) 𝑌 ) ) |
| 12 |
5 11
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) 𝑌 ) ) |
| 13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) |
| 14 |
13
|
elmpocl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 15 |
12 14
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |