| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issect.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | issect.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | issect.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | issect.i | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 5 |  | issect.s | ⊢ 𝑆  =  ( Sect ‘ 𝐶 ) | 
						
							| 6 |  | issect.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 7 |  | issect.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | issect.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 10 | 9 1 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 11 |  | fvexd | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  ∈  V ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 13 | 12 2 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  𝐻 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ℎ  =  𝐻 ) | 
						
							| 15 | 14 | oveqd | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( 𝑥 ℎ 𝑦 )  =  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ↔  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 17 | 14 | oveqd | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( 𝑦 ℎ 𝑥 )  =  ( 𝑦 𝐻 𝑥 ) ) | 
						
							| 18 | 17 | eleq2d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( 𝑔  ∈  ( 𝑦 ℎ 𝑥 )  ↔  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) ) ) | 
						
							| 19 | 16 18 | anbi12d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ℎ 𝑥 ) )  ↔  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) ) ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  𝑐  =  𝐶 ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( comp ‘ 𝑐 )  =  ( comp ‘ 𝐶 ) ) | 
						
							| 22 | 21 3 | eqtr4di | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( comp ‘ 𝑐 )  =   ·  ) | 
						
							| 23 | 22 | oveqd | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 )  =  ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) ) | 
						
							| 24 | 23 | oveqd | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 ) ) | 
						
							| 25 | 20 | fveq2d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( Id ‘ 𝑐 )  =  ( Id ‘ 𝐶 ) ) | 
						
							| 26 | 25 4 | eqtr4di | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( Id ‘ 𝑐 )  =   1  ) | 
						
							| 27 | 26 | fveq1d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( ( Id ‘ 𝑐 ) ‘ 𝑥 )  =  (  1  ‘ 𝑥 ) ) | 
						
							| 28 | 24 27 | eqeq12d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 )  =  ( ( Id ‘ 𝑐 ) ‘ 𝑥 )  ↔  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) ) | 
						
							| 29 | 19 28 | anbi12d | ⊢ ( ( 𝑐  =  𝐶  ∧  ℎ  =  𝐻 )  →  ( ( ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ℎ 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 )  =  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) )  ↔  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) ) ) | 
						
							| 30 | 11 13 29 | sbcied2 | ⊢ ( 𝑐  =  𝐶  →  ( [ ( Hom  ‘ 𝑐 )  /  ℎ ] ( ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ℎ 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 )  =  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) )  ↔  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 30 | opabbidv | ⊢ ( 𝑐  =  𝐶  →  { 〈 𝑓 ,  𝑔 〉  ∣  [ ( Hom  ‘ 𝑐 )  /  ℎ ] ( ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ℎ 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 )  =  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) } ) | 
						
							| 32 | 10 10 31 | mpoeq123dv | ⊢ ( 𝑐  =  𝐶  →  ( 𝑥  ∈  ( Base ‘ 𝑐 ) ,  𝑦  ∈  ( Base ‘ 𝑐 )  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  [ ( Hom  ‘ 𝑐 )  /  ℎ ] ( ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ℎ 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 )  =  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) } ) ) | 
						
							| 33 |  | df-sect | ⊢ Sect  =  ( 𝑐  ∈  Cat  ↦  ( 𝑥  ∈  ( Base ‘ 𝑐 ) ,  𝑦  ∈  ( Base ‘ 𝑐 )  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  [ ( Hom  ‘ 𝑐 )  /  ℎ ] ( ( 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ℎ 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 )  =  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) | 
						
							| 34 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 35 | 34 34 | mpoex | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) } )  ∈  V | 
						
							| 36 | 32 33 35 | fvmpt | ⊢ ( 𝐶  ∈  Cat  →  ( Sect ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) } ) ) | 
						
							| 37 | 6 36 | syl | ⊢ ( 𝜑  →  ( Sect ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) } ) ) | 
						
							| 38 | 5 37 | eqtrid | ⊢ ( 𝜑  →  𝑆  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) } ) ) |