Metamath Proof Explorer


Theorem sectffval

Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses issect.b B=BaseC
issect.h H=HomC
issect.o ·˙=compC
issect.i 1˙=IdC
issect.s S=SectC
issect.c φCCat
issect.x φXB
issect.y φYB
Assertion sectffval φS=xB,yBfg|fxHygyHxgxy·˙xf=1˙x

Proof

Step Hyp Ref Expression
1 issect.b B=BaseC
2 issect.h H=HomC
3 issect.o ·˙=compC
4 issect.i 1˙=IdC
5 issect.s S=SectC
6 issect.c φCCat
7 issect.x φXB
8 issect.y φYB
9 fveq2 c=CBasec=BaseC
10 9 1 eqtr4di c=CBasec=B
11 fvexd c=CHomcV
12 fveq2 c=CHomc=HomC
13 12 2 eqtr4di c=CHomc=H
14 simpr c=Ch=Hh=H
15 14 oveqd c=Ch=Hxhy=xHy
16 15 eleq2d c=Ch=HfxhyfxHy
17 14 oveqd c=Ch=Hyhx=yHx
18 17 eleq2d c=Ch=HgyhxgyHx
19 16 18 anbi12d c=Ch=HfxhygyhxfxHygyHx
20 simpl c=Ch=Hc=C
21 20 fveq2d c=Ch=Hcompc=compC
22 21 3 eqtr4di c=Ch=Hcompc=·˙
23 22 oveqd c=Ch=Hxycompcx=xy·˙x
24 23 oveqd c=Ch=Hgxycompcxf=gxy·˙xf
25 20 fveq2d c=Ch=HIdc=IdC
26 25 4 eqtr4di c=Ch=HIdc=1˙
27 26 fveq1d c=Ch=HIdcx=1˙x
28 24 27 eqeq12d c=Ch=Hgxycompcxf=Idcxgxy·˙xf=1˙x
29 19 28 anbi12d c=Ch=Hfxhygyhxgxycompcxf=IdcxfxHygyHxgxy·˙xf=1˙x
30 11 13 29 sbcied2 c=C[˙Homc/h]˙fxhygyhxgxycompcxf=IdcxfxHygyHxgxy·˙xf=1˙x
31 30 opabbidv c=Cfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx=fg|fxHygyHxgxy·˙xf=1˙x
32 10 10 31 mpoeq123dv c=CxBasec,yBasecfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx=xB,yBfg|fxHygyHxgxy·˙xf=1˙x
33 df-sect Sect=cCatxBasec,yBasecfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx
34 1 fvexi BV
35 34 34 mpoex xB,yBfg|fxHygyHxgxy·˙xf=1˙xV
36 32 33 35 fvmpt CCatSectC=xB,yBfg|fxHygyHxgxy·˙xf=1˙x
37 6 36 syl φSectC=xB,yBfg|fxHygyHxgxy·˙xf=1˙x
38 5 37 eqtrid φS=xB,yBfg|fxHygyHxgxy·˙xf=1˙x