Metamath Proof Explorer


Definition df-cat

Description: A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated with those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. Definition in Lang p. 53, without the axiom CAT 1, i.e., pairwise disjointness of hom-sets ( cat1 ). See setc2obas and setc2ohom for a counterexample. In contrast to definition 3.1 of Adamek p. 21, where "A category is a quadruple A = (O, hom, id, o)", a category is defined as an extensible structure consisting of three slots: the objects "O" ( ( Basec ) ), the morphisms "hom" ( ( Homc ) ) and the composition law "o" ( ( compc ) ). The identities "id" are defined by their properties related to morphisms and their composition, see condition 3.1(b) in Adamek p. 21 and df-cid . (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007) (Revised by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-cat Cat=c|[˙Basec/b]˙[˙Homc/h]˙[˙compc/o]˙xbgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccat classCat
1 vc setvarc
2 cbs classBase
3 1 cv setvarc
4 3 2 cfv classBasec
5 vb setvarb
6 chom classHom
7 3 6 cfv classHomc
8 vh setvarh
9 cco classcomp
10 3 9 cfv classcompc
11 vo setvaro
12 vx setvarx
13 5 cv setvarb
14 vg setvarg
15 12 cv setvarx
16 8 cv setvarh
17 15 15 16 co classxhx
18 vy setvary
19 vf setvarf
20 18 cv setvary
21 20 15 16 co classyhx
22 14 cv setvarg
23 20 15 cop classyx
24 11 cv setvaro
25 23 15 24 co classyxox
26 19 cv setvarf
27 22 26 25 co classgyxoxf
28 27 26 wceq wffgyxoxf=f
29 28 19 21 wral wfffyhxgyxoxf=f
30 15 20 16 co classxhy
31 15 15 cop classxx
32 31 20 24 co classxxoy
33 26 22 32 co classfxxoyg
34 33 26 wceq wfffxxoyg=f
35 34 19 30 wral wfffxhyfxxoyg=f
36 29 35 wa wfffyhxgyxoxf=ffxhyfxxoyg=f
37 36 18 13 wral wffybfyhxgyxoxf=ffxhyfxxoyg=f
38 37 14 17 wrex wffgxhxybfyhxgyxoxf=ffxhyfxxoyg=f
39 vz setvarz
40 39 cv setvarz
41 20 40 16 co classyhz
42 15 20 cop classxy
43 42 40 24 co classxyoz
44 22 26 43 co classgxyozf
45 15 40 16 co classxhz
46 44 45 wcel wffgxyozfxhz
47 vw setvarw
48 vk setvark
49 47 cv setvarw
50 40 49 16 co classzhw
51 48 cv setvark
52 20 40 cop classyz
53 52 49 24 co classyzow
54 51 22 53 co classkyzowg
55 42 49 24 co classxyow
56 54 26 55 co classkyzowgxyowf
57 15 40 cop classxz
58 57 49 24 co classxzow
59 51 44 58 co classkxzowgxyozf
60 56 59 wceq wffkyzowgxyowf=kxzowgxyozf
61 60 48 50 wral wffkzhwkyzowgxyowf=kxzowgxyozf
62 61 47 13 wral wffwbkzhwkyzowgxyowf=kxzowgxyozf
63 46 62 wa wffgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
64 63 14 41 wral wffgyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
65 64 19 30 wral wfffxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
66 65 39 13 wral wffzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
67 66 18 13 wral wffybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
68 38 67 wa wffgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
69 68 12 13 wral wffxbgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
70 69 11 10 wsbc wff[˙compc/o]˙xbgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
71 70 8 7 wsbc wff[˙Homc/h]˙[˙compc/o]˙xbgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
72 71 5 4 wsbc wff[˙Basec/b]˙[˙Homc/h]˙[˙compc/o]˙xbgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
73 72 1 cab classc|[˙Basec/b]˙[˙Homc/h]˙[˙compc/o]˙xbgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf
74 0 73 wceq wffCat=c|[˙Basec/b]˙[˙Homc/h]˙[˙compc/o]˙xbgxhxybfyhxgyxoxf=ffxhyfxxoyg=fybzbfxhygyhzgxyozfxhzwbkzhwkyzowgxyowf=kxzowgxyozf