Metamath Proof Explorer


Theorem cat1

Description: The definition of category df-cat does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. See setc2obas and setc2ohom for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa and its subsection. (Contributed by Zhi Wang, 15-Sep-2024)

Ref Expression
Assertion cat1 cCat[˙Basec/b]˙[˙Homc/h]˙¬xbybzbwbxhyzhwx=zy=w

Proof

Step Hyp Ref Expression
1 2on 2𝑜On
2 eqid SetCat2𝑜=SetCat2𝑜
3 2 setccat 2𝑜OnSetCat2𝑜Cat
4 1 3 ax-mp SetCat2𝑜Cat
5 1 a1i 2𝑜On
6 eqid BaseSetCat2𝑜=BaseSetCat2𝑜
7 eqid HomSetCat2𝑜=HomSetCat2𝑜
8 0ex V
9 8 prid1
10 df2o2 2𝑜=
11 9 10 eleqtrri 2𝑜
12 11 a1i 2𝑜
13 p0ex V
14 13 prid2
15 14 10 eleqtrri 2𝑜
16 15 a1i 2𝑜
17 0nep0
18 17 a1i
19 2 5 6 7 12 16 18 cat1lem xBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
20 19 mptru xBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
21 fvexd c=SetCat2𝑜BasecV
22 fveq2 c=SetCat2𝑜Basec=BaseSetCat2𝑜
23 fvexd c=SetCat2𝑜b=BaseSetCat2𝑜HomcV
24 fveq2 c=SetCat2𝑜Homc=HomSetCat2𝑜
25 24 adantr c=SetCat2𝑜b=BaseSetCat2𝑜Homc=HomSetCat2𝑜
26 oveq h=HomSetCat2𝑜xhy=xHomSetCat2𝑜y
27 oveq h=HomSetCat2𝑜zhw=zHomSetCat2𝑜w
28 26 27 ineq12d h=HomSetCat2𝑜xhyzhw=xHomSetCat2𝑜yzHomSetCat2𝑜w
29 28 neeq1d h=HomSetCat2𝑜xhyzhwxHomSetCat2𝑜yzHomSetCat2𝑜w
30 29 anbi1d h=HomSetCat2𝑜xhyzhw¬x=zy=wxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
31 30 2rexbidv h=HomSetCat2𝑜zbwbxhyzhw¬x=zy=wzbwbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
32 31 2rexbidv h=HomSetCat2𝑜xbybzbwbxhyzhw¬x=zy=wxbybzbwbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
33 32 adantl c=SetCat2𝑜b=BaseSetCat2𝑜h=HomSetCat2𝑜xbybzbwbxhyzhw¬x=zy=wxbybzbwbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
34 pm4.61 ¬xhyzhwx=zy=wxhyzhw¬x=zy=w
35 34 2rexbii zbwb¬xhyzhwx=zy=wzbwbxhyzhw¬x=zy=w
36 rexnal2 zbwb¬xhyzhwx=zy=w¬zbwbxhyzhwx=zy=w
37 35 36 bitr3i zbwbxhyzhw¬x=zy=w¬zbwbxhyzhwx=zy=w
38 37 2rexbii xbybzbwbxhyzhw¬x=zy=wxbyb¬zbwbxhyzhwx=zy=w
39 rexnal2 xbyb¬zbwbxhyzhwx=zy=w¬xbybzbwbxhyzhwx=zy=w
40 38 39 bitri xbybzbwbxhyzhw¬x=zy=w¬xbybzbwbxhyzhwx=zy=w
41 40 a1i c=SetCat2𝑜b=BaseSetCat2𝑜h=HomSetCat2𝑜xbybzbwbxhyzhw¬x=zy=w¬xbybzbwbxhyzhwx=zy=w
42 rexeq b=BaseSetCat2𝑜wbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wwBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
43 42 2rexbidv b=BaseSetCat2𝑜ybzbwbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wybzbwBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
44 43 rexbidv b=BaseSetCat2𝑜xbybzbwbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wxbybzbwBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
45 rexeq b=BaseSetCat2𝑜zbwBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wzBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
46 45 2rexbidv b=BaseSetCat2𝑜xbybzbwBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wxbybzBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
47 rexeq b=BaseSetCat2𝑜ybzBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wyBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
48 47 rexeqbi1dv b=BaseSetCat2𝑜xbybzBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wxBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
49 44 46 48 3bitrd b=BaseSetCat2𝑜xbybzbwbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wxBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
50 49 ad2antlr c=SetCat2𝑜b=BaseSetCat2𝑜h=HomSetCat2𝑜xbybzbwbxHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wxBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
51 33 41 50 3bitr3d c=SetCat2𝑜b=BaseSetCat2𝑜h=HomSetCat2𝑜¬xbybzbwbxhyzhwx=zy=wxBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
52 23 25 51 sbcied2 c=SetCat2𝑜b=BaseSetCat2𝑜[˙Homc/h]˙¬xbybzbwbxhyzhwx=zy=wxBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
53 21 22 52 sbcied2 c=SetCat2𝑜[˙Basec/b]˙[˙Homc/h]˙¬xbybzbwbxhyzhwx=zy=wxBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=w
54 53 rspcev SetCat2𝑜CatxBaseSetCat2𝑜yBaseSetCat2𝑜zBaseSetCat2𝑜wBaseSetCat2𝑜xHomSetCat2𝑜yzHomSetCat2𝑜w¬x=zy=wcCat[˙Basec/b]˙[˙Homc/h]˙¬xbybzbwbxhyzhwx=zy=w
55 4 20 54 mp2an cCat[˙Basec/b]˙[˙Homc/h]˙¬xbybzbwbxhyzhwx=zy=w