Description: The definition of category df-cat does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. See setc2obas and setc2ohom for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa and its subsection. (Contributed by Zhi Wang, 15-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | cat1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on | |
|
2 | eqid | |
|
3 | 2 | setccat | |
4 | 1 3 | ax-mp | |
5 | 1 | a1i | |
6 | eqid | |
|
7 | eqid | |
|
8 | 0ex | |
|
9 | 8 | prid1 | |
10 | df2o2 | |
|
11 | 9 10 | eleqtrri | |
12 | 11 | a1i | |
13 | p0ex | |
|
14 | 13 | prid2 | |
15 | 14 10 | eleqtrri | |
16 | 15 | a1i | |
17 | 0nep0 | |
|
18 | 17 | a1i | |
19 | 2 5 6 7 12 16 18 | cat1lem | |
20 | 19 | mptru | |
21 | fvexd | |
|
22 | fveq2 | |
|
23 | fvexd | |
|
24 | fveq2 | |
|
25 | 24 | adantr | |
26 | oveq | |
|
27 | oveq | |
|
28 | 26 27 | ineq12d | |
29 | 28 | neeq1d | |
30 | 29 | anbi1d | |
31 | 30 | 2rexbidv | |
32 | 31 | 2rexbidv | |
33 | 32 | adantl | |
34 | pm4.61 | |
|
35 | 34 | 2rexbii | |
36 | rexnal2 | |
|
37 | 35 36 | bitr3i | |
38 | 37 | 2rexbii | |
39 | rexnal2 | |
|
40 | 38 39 | bitri | |
41 | 40 | a1i | |
42 | rexeq | |
|
43 | 42 | 2rexbidv | |
44 | 43 | rexbidv | |
45 | rexeq | |
|
46 | 45 | 2rexbidv | |
47 | rexeq | |
|
48 | 47 | rexeqbi1dv | |
49 | 44 46 48 | 3bitrd | |
50 | 49 | ad2antlr | |
51 | 33 41 50 | 3bitr3d | |
52 | 23 25 51 | sbcied2 | |
53 | 21 22 52 | sbcied2 | |
54 | 53 | rspcev | |
55 | 4 20 54 | mp2an | |