Metamath Proof Explorer


Definition df-homa

Description: Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma and df-coda . (Contributed by FL, 6-May-2007) (Revised by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-homa Homa=cCatxBasec×Basecx×Homcx

Detailed syntax breakdown

Step Hyp Ref Expression
0 choma classHoma
1 vc setvarc
2 ccat classCat
3 vx setvarx
4 cbs classBase
5 1 cv setvarc
6 5 4 cfv classBasec
7 6 6 cxp classBasec×Basec
8 3 cv setvarx
9 8 csn classx
10 chom classHom
11 5 10 cfv classHomc
12 8 11 cfv classHomcx
13 9 12 cxp classx×Homcx
14 3 7 13 cmpt classxBasec×Basecx×Homcx
15 1 2 14 cmpt classcCatxBasec×Basecx×Homcx
16 0 15 wceq wffHoma=cCatxBasec×Basecx×Homcx