Database
BASIC CATEGORY THEORY
Arrows (disjointified hom-sets)
df-homa
Metamath Proof Explorer
Description: Definition of the hom-set extractor for arrows, which tags the morphisms
of the underlying hom-set with domain and codomain, which can then be
extracted using df-doma and df-coda . (Contributed by FL , 6-May-2007) (Revised by Mario Carneiro , 11-Jan-2017)
Ref
Expression
Assertion
df-homa
|- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
choma
|- HomA
1
vc
|- c
2
ccat
|- Cat
3
vx
|- x
4
cbs
|- Base
5
1
cv
|- c
6
5 4
cfv
|- ( Base ` c )
7
6 6
cxp
|- ( ( Base ` c ) X. ( Base ` c ) )
8
3
cv
|- x
9
8
csn
|- { x }
10
chom
|- Hom
11
5 10
cfv
|- ( Hom ` c )
12
8 11
cfv
|- ( ( Hom ` c ) ` x )
13
9 12
cxp
|- ( { x } X. ( ( Hom ` c ) ` x ) )
14
3 7 13
cmpt
|- ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) )
15
1 2 14
cmpt
|- ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) )
16
0 15
wceq
|- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) )