Metamath Proof Explorer


Definition df-homa

Description: Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma and df-coda . (Contributed by FL, 6-May-2007) (Revised by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-homa
|- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 choma
 |-  HomA
1 vc
 |-  c
2 ccat
 |-  Cat
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  c
6 5 4 cfv
 |-  ( Base ` c )
7 6 6 cxp
 |-  ( ( Base ` c ) X. ( Base ` c ) )
8 3 cv
 |-  x
9 8 csn
 |-  { x }
10 chom
 |-  Hom
11 5 10 cfv
 |-  ( Hom ` c )
12 8 11 cfv
 |-  ( ( Hom ` c ) ` x )
13 9 12 cxp
 |-  ( { x } X. ( ( Hom ` c ) ` x ) )
14 3 7 13 cmpt
 |-  ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) )
15 1 2 14 cmpt
 |-  ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) )
16 0 15 wceq
 |-  HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) )