Metamath Proof Explorer


Theorem sbcied2

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014)

Ref Expression
Hypotheses sbcied2.1 φAV
sbcied2.2 φA=B
sbcied2.3 φx=Bψχ
Assertion sbcied2 φ[˙A/x]˙ψχ

Proof

Step Hyp Ref Expression
1 sbcied2.1 φAV
2 sbcied2.2 φA=B
3 sbcied2.3 φx=Bψχ
4 id x=Ax=A
5 4 2 sylan9eqr φx=Ax=B
6 5 3 syldan φx=Aψχ
7 1 6 sbcied φ[˙A/x]˙ψχ