Metamath Proof Explorer


Theorem elrabsf

Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf has implicit substitution). The hypothesis specifies that x must not be a free variable in B . (Contributed by NM, 30-Sep-2003) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis elrabsf.1 _xB
Assertion elrabsf AxB|φAB[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 elrabsf.1 _xB
2 dfsbcq y=A[˙y/x]˙φ[˙A/x]˙φ
3 nfcv _yB
4 nfv yφ
5 nfsbc1v x[˙y/x]˙φ
6 sbceq1a x=yφ[˙y/x]˙φ
7 1 3 4 5 6 cbvrabw xB|φ=yB|[˙y/x]˙φ
8 2 7 elrab2 AxB|φAB[˙A/x]˙φ