Metamath Proof Explorer


Theorem elrabf

Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003)

Ref Expression
Hypotheses elrabf.1 _ x A
elrabf.2 _ x B
elrabf.3 x ψ
elrabf.4 x = A φ ψ
Assertion elrabf A x B | φ A B ψ

Proof

Step Hyp Ref Expression
1 elrabf.1 _ x A
2 elrabf.2 _ x B
3 elrabf.3 x ψ
4 elrabf.4 x = A φ ψ
5 elex A x B | φ A V
6 elex A B A V
7 6 adantr A B ψ A V
8 df-rab x B | φ = x | x B φ
9 8 eleq2i A x B | φ A x | x B φ
10 1 2 nfel x A B
11 10 3 nfan x A B ψ
12 eleq1 x = A x B A B
13 12 4 anbi12d x = A x B φ A B ψ
14 1 11 13 elabgf A V A x | x B φ A B ψ
15 9 14 bitrid A V A x B | φ A B ψ
16 5 7 15 pm5.21nii A x B | φ A B ψ