Metamath Proof Explorer


Theorem elrabf

Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003)

Ref Expression
Hypotheses elrabf.1 _xA
elrabf.2 _xB
elrabf.3 xψ
elrabf.4 x=Aφψ
Assertion elrabf AxB|φABψ

Proof

Step Hyp Ref Expression
1 elrabf.1 _xA
2 elrabf.2 _xB
3 elrabf.3 xψ
4 elrabf.4 x=Aφψ
5 elex AxB|φAV
6 elex ABAV
7 6 adantr ABψAV
8 df-rab xB|φ=x|xBφ
9 8 eleq2i AxB|φAx|xBφ
10 1 2 nfel xAB
11 10 3 nfan xABψ
12 eleq1 x=AxBAB
13 12 4 anbi12d x=AxBφABψ
14 1 11 13 elabgf AVAx|xBφABψ
15 9 14 bitrid AVAxB|φABψ
16 5 7 15 pm5.21nii AxB|φABψ