Metamath Proof Explorer


Theorem elrabf

Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003)

Ref Expression
Hypotheses elrabf.1 𝑥 𝐴
elrabf.2 𝑥 𝐵
elrabf.3 𝑥 𝜓
elrabf.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion elrabf ( 𝐴 ∈ { 𝑥𝐵𝜑 } ↔ ( 𝐴𝐵𝜓 ) )

Proof

Step Hyp Ref Expression
1 elrabf.1 𝑥 𝐴
2 elrabf.2 𝑥 𝐵
3 elrabf.3 𝑥 𝜓
4 elrabf.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
5 elex ( 𝐴 ∈ { 𝑥𝐵𝜑 } → 𝐴 ∈ V )
6 elex ( 𝐴𝐵𝐴 ∈ V )
7 6 adantr ( ( 𝐴𝐵𝜓 ) → 𝐴 ∈ V )
8 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
9 8 eleq2i ( 𝐴 ∈ { 𝑥𝐵𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } )
10 1 2 nfel 𝑥 𝐴𝐵
11 10 3 nfan 𝑥 ( 𝐴𝐵𝜓 )
12 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
13 12 4 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝜑 ) ↔ ( 𝐴𝐵𝜓 ) ) )
14 1 11 13 elabgf ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ( 𝐴𝐵𝜓 ) ) )
15 9 14 bitrid ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥𝐵𝜑 } ↔ ( 𝐴𝐵𝜓 ) ) )
16 5 7 15 pm5.21nii ( 𝐴 ∈ { 𝑥𝐵𝜑 } ↔ ( 𝐴𝐵𝜓 ) )