Step |
Hyp |
Ref |
Expression |
1 |
|
elrabf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
elrabf.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
elrabf.3 |
⊢ Ⅎ 𝑥 𝜓 |
4 |
|
elrabf.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
elex |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } → 𝐴 ∈ V ) |
6 |
|
elex |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → 𝐴 ∈ V ) |
8 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
9 |
8
|
eleq2i |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
10 |
1 2
|
nfel |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
11 |
10 3
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) |
12 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
13 |
12 4
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
14 |
1 11 13
|
elabgf |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
15 |
9 14
|
bitrid |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
16 |
5 7 15
|
pm5.21nii |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |