Metamath Proof Explorer
Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)
|
|
Ref |
Expression |
|
Hypothesis |
rabtru.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
rabtru |
⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabtru.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
tru |
⊢ ⊤ |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 4 |
|
nftru |
⊢ Ⅎ 𝑥 ⊤ |
| 5 |
|
biidd |
⊢ ( 𝑥 = 𝑦 → ( ⊤ ↔ ⊤ ) ) |
| 6 |
3 1 4 5
|
elrabf |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ ( 𝑦 ∈ 𝐴 ∧ ⊤ ) ) |
| 7 |
2 6
|
mpbiran2 |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ 𝑦 ∈ 𝐴 ) |
| 8 |
7
|
eqriv |
⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |