Metamath Proof Explorer


Theorem cat1lem

Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. Lemma for cat1 . (Contributed by Zhi Wang, 15-Sep-2024)

Ref Expression
Hypotheses cat1lem.1 C=SetCatU
cat1lem.2 φUV
cat1lem.3 B=BaseC
cat1lem.4 H=HomC
cat1lem.5 φU
cat1lem.6 φYU
cat1lem.7 φY
Assertion cat1lem φxByBzBwBxHyzHw¬x=zy=w

Proof

Step Hyp Ref Expression
1 cat1lem.1 C=SetCatU
2 cat1lem.2 φUV
3 cat1lem.3 B=BaseC
4 cat1lem.4 H=HomC
5 cat1lem.5 φU
6 cat1lem.6 φYU
7 cat1lem.7 φY
8 1 2 setcbas φU=BaseC
9 8 3 eqtr4di φU=B
10 5 9 eleqtrd φB
11 6 9 eleqtrd φYB
12 f0 :
13 1 2 4 5 5 elsetchom φH:
14 12 13 mpbiri φH
15 f0 :Y
16 1 2 4 5 6 elsetchom φHY:Y
17 15 16 mpbiri φHY
18 inelcm HHYHHY
19 14 17 18 syl2anc φHHY
20 7 neneqd φ¬=Y
21 20 intnand φ¬==Y
22 oveq1 z=zHw=Hw
23 22 ineq2d z=HzHw=HHw
24 23 neeq1d z=HzHwHHw
25 eqeq2 z==z=
26 25 anbi1d z==z=w==w
27 26 notbid z=¬=z=w¬==w
28 24 27 anbi12d z=HzHw¬=z=wHHw¬==w
29 oveq2 w=YHw=HY
30 29 ineq2d w=YHHw=HHY
31 30 neeq1d w=YHHwHHY
32 eqeq2 w=Y=w=Y
33 32 anbi2d w=Y==w==Y
34 33 notbid w=Y¬==w¬==Y
35 31 34 anbi12d w=YHHw¬==wHHY¬==Y
36 28 35 rspc2ev BYBHHY¬==YzBwBHzHw¬=z=w
37 10 11 19 21 36 syl112anc φzBwBHzHw¬=z=w
38 oveq1 x=xHy=Hy
39 38 ineq1d x=xHyzHw=HyzHw
40 39 neeq1d x=xHyzHwHyzHw
41 eqeq1 x=x=z=z
42 41 anbi1d x=x=zy=w=zy=w
43 42 notbid x=¬x=zy=w¬=zy=w
44 40 43 anbi12d x=xHyzHw¬x=zy=wHyzHw¬=zy=w
45 44 2rexbidv x=zBwBxHyzHw¬x=zy=wzBwBHyzHw¬=zy=w
46 oveq2 y=Hy=H
47 46 ineq1d y=HyzHw=HzHw
48 47 neeq1d y=HyzHwHzHw
49 eqeq1 y=y=w=w
50 49 anbi2d y==zy=w=z=w
51 50 notbid y=¬=zy=w¬=z=w
52 48 51 anbi12d y=HyzHw¬=zy=wHzHw¬=z=w
53 52 2rexbidv y=zBwBHyzHw¬=zy=wzBwBHzHw¬=z=w
54 45 53 rspc2ev BBzBwBHzHw¬=z=wxByBzBwBxHyzHw¬x=zy=w
55 10 10 37 54 syl3anc φxByBzBwBxHyzHw¬x=zy=w