Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. Lemma for cat1 . (Contributed by Zhi Wang, 15-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cat1lem.1 | |
|
cat1lem.2 | |
||
cat1lem.3 | |
||
cat1lem.4 | |
||
cat1lem.5 | |
||
cat1lem.6 | |
||
cat1lem.7 | |
||
Assertion | cat1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cat1lem.1 | |
|
2 | cat1lem.2 | |
|
3 | cat1lem.3 | |
|
4 | cat1lem.4 | |
|
5 | cat1lem.5 | |
|
6 | cat1lem.6 | |
|
7 | cat1lem.7 | |
|
8 | 1 2 | setcbas | |
9 | 8 3 | eqtr4di | |
10 | 5 9 | eleqtrd | |
11 | 6 9 | eleqtrd | |
12 | f0 | |
|
13 | 1 2 4 5 5 | elsetchom | |
14 | 12 13 | mpbiri | |
15 | f0 | |
|
16 | 1 2 4 5 6 | elsetchom | |
17 | 15 16 | mpbiri | |
18 | inelcm | |
|
19 | 14 17 18 | syl2anc | |
20 | 7 | neneqd | |
21 | 20 | intnand | |
22 | oveq1 | |
|
23 | 22 | ineq2d | |
24 | 23 | neeq1d | |
25 | eqeq2 | |
|
26 | 25 | anbi1d | |
27 | 26 | notbid | |
28 | 24 27 | anbi12d | |
29 | oveq2 | |
|
30 | 29 | ineq2d | |
31 | 30 | neeq1d | |
32 | eqeq2 | |
|
33 | 32 | anbi2d | |
34 | 33 | notbid | |
35 | 31 34 | anbi12d | |
36 | 28 35 | rspc2ev | |
37 | 10 11 19 21 36 | syl112anc | |
38 | oveq1 | |
|
39 | 38 | ineq1d | |
40 | 39 | neeq1d | |
41 | eqeq1 | |
|
42 | 41 | anbi1d | |
43 | 42 | notbid | |
44 | 40 43 | anbi12d | |
45 | 44 | 2rexbidv | |
46 | oveq2 | |
|
47 | 46 | ineq1d | |
48 | 47 | neeq1d | |
49 | eqeq1 | |
|
50 | 49 | anbi2d | |
51 | 50 | notbid | |
52 | 48 51 | anbi12d | |
53 | 52 | 2rexbidv | |
54 | 45 53 | rspc2ev | |
55 | 10 10 37 54 | syl3anc | |