Description: Function returning the section relation in a category. Given arrows f : X --> Y and g : Y --> X , we say f Sect g , that is, f is a section of g , if g o. f = 1X . If there there is an arrow g with f Sect g , the arrow f is called a section, see definition 7.19 of Adamek p. 106. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-sect | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csect | |
|
1 | vc | |
|
2 | ccat | |
|
3 | vx | |
|
4 | cbs | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | vy | |
|
8 | vf | |
|
9 | vg | |
|
10 | chom | |
|
11 | 5 10 | cfv | |
12 | vh | |
|
13 | 8 | cv | |
14 | 3 | cv | |
15 | 12 | cv | |
16 | 7 | cv | |
17 | 14 16 15 | co | |
18 | 13 17 | wcel | |
19 | 9 | cv | |
20 | 16 14 15 | co | |
21 | 19 20 | wcel | |
22 | 18 21 | wa | |
23 | 14 16 | cop | |
24 | cco | |
|
25 | 5 24 | cfv | |
26 | 23 14 25 | co | |
27 | 19 13 26 | co | |
28 | ccid | |
|
29 | 5 28 | cfv | |
30 | 14 29 | cfv | |
31 | 27 30 | wceq | |
32 | 22 31 | wa | |
33 | 32 12 11 | wsbc | |
34 | 33 8 9 | copab | |
35 | 3 7 6 6 34 | cmpo | |
36 | 1 2 35 | cmpt | |
37 | 0 36 | wceq | |