Metamath Proof Explorer


Definition df-sect

Description: Function returning the section relation in a category. Given arrows f : X --> Y and g : Y --> X , we say f Sect g , that is, f is a section of g , if g o. f = 1X . If there there is an arrow g with f Sect g , the arrow f is called a section, see definition 7.19 of Adamek p. 106. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-sect Sect=cCatxBasec,yBasecfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx

Detailed syntax breakdown

Step Hyp Ref Expression
0 csect classSect
1 vc setvarc
2 ccat classCat
3 vx setvarx
4 cbs classBase
5 1 cv setvarc
6 5 4 cfv classBasec
7 vy setvary
8 vf setvarf
9 vg setvarg
10 chom classHom
11 5 10 cfv classHomc
12 vh setvarh
13 8 cv setvarf
14 3 cv setvarx
15 12 cv setvarh
16 7 cv setvary
17 14 16 15 co classxhy
18 13 17 wcel wfffxhy
19 9 cv setvarg
20 16 14 15 co classyhx
21 19 20 wcel wffgyhx
22 18 21 wa wfffxhygyhx
23 14 16 cop classxy
24 cco classcomp
25 5 24 cfv classcompc
26 23 14 25 co classxycompcx
27 19 13 26 co classgxycompcxf
28 ccid classId
29 5 28 cfv classIdc
30 14 29 cfv classIdcx
31 27 30 wceq wffgxycompcxf=Idcx
32 22 31 wa wfffxhygyhxgxycompcxf=Idcx
33 32 12 11 wsbc wff[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx
34 33 8 9 copab classfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx
35 3 7 6 6 34 cmpo classxBasec,yBasecfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx
36 1 2 35 cmpt classcCatxBasec,yBasecfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx
37 0 36 wceq wffSect=cCatxBasec,yBasecfg|[˙Homc/h]˙fxhygyhxgxycompcxf=Idcx