| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issect.b |
|- B = ( Base ` C ) |
| 2 |
|
issect.h |
|- H = ( Hom ` C ) |
| 3 |
|
issect.o |
|- .x. = ( comp ` C ) |
| 4 |
|
issect.i |
|- .1. = ( Id ` C ) |
| 5 |
|
issect.s |
|- S = ( Sect ` C ) |
| 6 |
|
issect.c |
|- ( ph -> C e. Cat ) |
| 7 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
| 8 |
7 1
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
| 9 |
|
fvexd |
|- ( c = C -> ( Hom ` c ) e. _V ) |
| 10 |
|
fveq2 |
|- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
| 11 |
10 2
|
eqtr4di |
|- ( c = C -> ( Hom ` c ) = H ) |
| 12 |
|
simpr |
|- ( ( c = C /\ h = H ) -> h = H ) |
| 13 |
12
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( x h y ) = ( x H y ) ) |
| 14 |
13
|
eleq2d |
|- ( ( c = C /\ h = H ) -> ( f e. ( x h y ) <-> f e. ( x H y ) ) ) |
| 15 |
12
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( y h x ) = ( y H x ) ) |
| 16 |
15
|
eleq2d |
|- ( ( c = C /\ h = H ) -> ( g e. ( y h x ) <-> g e. ( y H x ) ) ) |
| 17 |
14 16
|
anbi12d |
|- ( ( c = C /\ h = H ) -> ( ( f e. ( x h y ) /\ g e. ( y h x ) ) <-> ( f e. ( x H y ) /\ g e. ( y H x ) ) ) ) |
| 18 |
|
simpl |
|- ( ( c = C /\ h = H ) -> c = C ) |
| 19 |
18
|
fveq2d |
|- ( ( c = C /\ h = H ) -> ( comp ` c ) = ( comp ` C ) ) |
| 20 |
19 3
|
eqtr4di |
|- ( ( c = C /\ h = H ) -> ( comp ` c ) = .x. ) |
| 21 |
20
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( <. x , y >. ( comp ` c ) x ) = ( <. x , y >. .x. x ) ) |
| 22 |
21
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( g ( <. x , y >. .x. x ) f ) ) |
| 23 |
18
|
fveq2d |
|- ( ( c = C /\ h = H ) -> ( Id ` c ) = ( Id ` C ) ) |
| 24 |
23 4
|
eqtr4di |
|- ( ( c = C /\ h = H ) -> ( Id ` c ) = .1. ) |
| 25 |
24
|
fveq1d |
|- ( ( c = C /\ h = H ) -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) |
| 26 |
22 25
|
eqeq12d |
|- ( ( c = C /\ h = H ) -> ( ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) <-> ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) |
| 27 |
17 26
|
anbi12d |
|- ( ( c = C /\ h = H ) -> ( ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) |
| 28 |
9 11 27
|
sbcied2 |
|- ( c = C -> ( [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) |
| 29 |
28
|
opabbidv |
|- ( c = C -> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } = { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) |
| 30 |
8 8 29
|
mpoeq123dv |
|- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| 31 |
|
df-sect |
|- Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |
| 32 |
1
|
fvexi |
|- B e. _V |
| 33 |
32 32
|
mpoex |
|- ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) e. _V |
| 34 |
30 31 33
|
fvmpt |
|- ( C e. Cat -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| 35 |
6 34
|
syl |
|- ( ph -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| 36 |
5 35
|
eqtrid |
|- ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |