| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectrcl.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
| 2 |
|
sectrcl.f |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
| 3 |
|
df-br |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑆 𝑌 ) ) |
| 4 |
|
df-ov |
⊢ ( 𝑋 𝑆 𝑌 ) = ( 𝑆 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 5 |
4
|
eleq2i |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑆 𝑌 ) ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑆 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 6 |
3 5
|
bitri |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑆 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 7 |
|
elfvne0 |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑆 ‘ 〈 𝑋 , 𝑌 〉 ) → 𝑆 ≠ ∅ ) |
| 8 |
6 7
|
sylbi |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → 𝑆 ≠ ∅ ) |
| 9 |
1
|
neeq1i |
⊢ ( 𝑆 ≠ ∅ ↔ ( Sect ‘ 𝐶 ) ≠ ∅ ) |
| 10 |
|
n0 |
⊢ ( ( Sect ‘ 𝐶 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Sect ‘ 𝐶 ) ) |
| 11 |
9 10
|
bitri |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Sect ‘ 𝐶 ) ) |
| 12 |
8 11
|
sylib |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → ∃ 𝑥 𝑥 ∈ ( Sect ‘ 𝐶 ) ) |
| 13 |
|
df-sect |
⊢ Sect = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |
| 14 |
13
|
mptrcl |
⊢ ( 𝑥 ∈ ( Sect ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 15 |
14
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( Sect ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 16 |
2 12 15
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |