| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invrcl.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 2 |
|
invrcl.f |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |
| 3 |
|
df-br |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ) |
| 4 |
|
df-ov |
⊢ ( 𝑋 𝑁 𝑌 ) = ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 5 |
4
|
eleq2i |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 6 |
3 5
|
bitri |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 7 |
|
elfvne0 |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) → 𝑁 ≠ ∅ ) |
| 8 |
6 7
|
sylbi |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝑁 ≠ ∅ ) |
| 9 |
1
|
neeq1i |
⊢ ( 𝑁 ≠ ∅ ↔ ( Inv ‘ 𝐶 ) ≠ ∅ ) |
| 10 |
|
n0 |
⊢ ( ( Inv ‘ 𝐶 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) ) |
| 11 |
9 10
|
bitri |
⊢ ( 𝑁 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) ) |
| 12 |
8 11
|
sylib |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) ) |
| 13 |
|
df-inv |
⊢ Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) ) |
| 14 |
13
|
mptrcl |
⊢ ( 𝑥 ∈ ( Inv ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 15 |
14
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 16 |
2 12 15
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |