| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invrcl.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 2 |
|
invrcl.f |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |
| 3 |
|
invrcl2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
df-br |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ) |
| 5 |
2 4
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ) |
| 6 |
1 2
|
invrcl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 7 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
| 8 |
3 1 6 7
|
invffval |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ) |
| 9 |
8
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) 𝑌 ) ) |
| 10 |
5 9
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) 𝑌 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) |
| 12 |
11
|
elmpocl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |