Metamath Proof Explorer


Theorem invrcl2

Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses invrcl.n
|- N = ( Inv ` C )
invrcl.f
|- ( ph -> F ( X N Y ) G )
invrcl2.b
|- B = ( Base ` C )
Assertion invrcl2
|- ( ph -> ( X e. B /\ Y e. B ) )

Proof

Step Hyp Ref Expression
1 invrcl.n
 |-  N = ( Inv ` C )
2 invrcl.f
 |-  ( ph -> F ( X N Y ) G )
3 invrcl2.b
 |-  B = ( Base ` C )
4 df-br
 |-  ( F ( X N Y ) G <-> <. F , G >. e. ( X N Y ) )
5 2 4 sylib
 |-  ( ph -> <. F , G >. e. ( X N Y ) )
6 1 2 invrcl
 |-  ( ph -> C e. Cat )
7 eqid
 |-  ( Sect ` C ) = ( Sect ` C )
8 3 1 6 7 invffval
 |-  ( ph -> N = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) )
9 8 oveqd
 |-  ( ph -> ( X N Y ) = ( X ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Y ) )
10 5 9 eleqtrd
 |-  ( ph -> <. F , G >. e. ( X ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Y ) )
11 eqid
 |-  ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) )
12 11 elmpocl
 |-  ( <. F , G >. e. ( X ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Y ) -> ( X e. B /\ Y e. B ) )
13 10 12 syl
 |-  ( ph -> ( X e. B /\ Y e. B ) )