Metamath Proof Explorer


Theorem invrcl

Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses invrcl.n
|- N = ( Inv ` C )
invrcl.f
|- ( ph -> F ( X N Y ) G )
Assertion invrcl
|- ( ph -> C e. Cat )

Proof

Step Hyp Ref Expression
1 invrcl.n
 |-  N = ( Inv ` C )
2 invrcl.f
 |-  ( ph -> F ( X N Y ) G )
3 df-br
 |-  ( F ( X N Y ) G <-> <. F , G >. e. ( X N Y ) )
4 df-ov
 |-  ( X N Y ) = ( N ` <. X , Y >. )
5 4 eleq2i
 |-  ( <. F , G >. e. ( X N Y ) <-> <. F , G >. e. ( N ` <. X , Y >. ) )
6 3 5 bitri
 |-  ( F ( X N Y ) G <-> <. F , G >. e. ( N ` <. X , Y >. ) )
7 elfvne0
 |-  ( <. F , G >. e. ( N ` <. X , Y >. ) -> N =/= (/) )
8 6 7 sylbi
 |-  ( F ( X N Y ) G -> N =/= (/) )
9 1 neeq1i
 |-  ( N =/= (/) <-> ( Inv ` C ) =/= (/) )
10 n0
 |-  ( ( Inv ` C ) =/= (/) <-> E. x x e. ( Inv ` C ) )
11 9 10 bitri
 |-  ( N =/= (/) <-> E. x x e. ( Inv ` C ) )
12 8 11 sylib
 |-  ( F ( X N Y ) G -> E. x x e. ( Inv ` C ) )
13 df-inv
 |-  Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) )
14 13 mptrcl
 |-  ( x e. ( Inv ` C ) -> C e. Cat )
15 14 exlimiv
 |-  ( E. x x e. ( Inv ` C ) -> C e. Cat )
16 2 12 15 3syl
 |-  ( ph -> C e. Cat )