| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invfval.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | invfval.n |  |-  N = ( Inv ` C ) | 
						
							| 3 |  | invfval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | invfval.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | invfval.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | invfval.s |  |-  S = ( Sect ` C ) | 
						
							| 7 |  | fveq2 |  |-  ( c = C -> ( Base ` c ) = ( Base ` C ) ) | 
						
							| 8 | 7 1 | eqtr4di |  |-  ( c = C -> ( Base ` c ) = B ) | 
						
							| 9 |  | fveq2 |  |-  ( c = C -> ( Sect ` c ) = ( Sect ` C ) ) | 
						
							| 10 | 9 6 | eqtr4di |  |-  ( c = C -> ( Sect ` c ) = S ) | 
						
							| 11 | 10 | oveqd |  |-  ( c = C -> ( x ( Sect ` c ) y ) = ( x S y ) ) | 
						
							| 12 | 10 | oveqd |  |-  ( c = C -> ( y ( Sect ` c ) x ) = ( y S x ) ) | 
						
							| 13 | 12 | cnveqd |  |-  ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y S x ) ) | 
						
							| 14 | 11 13 | ineq12d |  |-  ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x S y ) i^i `' ( y S x ) ) ) | 
						
							| 15 | 8 8 14 | mpoeq123dv |  |-  ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) | 
						
							| 16 |  | df-inv |  |-  Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) | 
						
							| 17 | 1 | fvexi |  |-  B e. _V | 
						
							| 18 | 17 17 | mpoex |  |-  ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) e. _V | 
						
							| 19 | 15 16 18 | fvmpt |  |-  ( C e. Cat -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> ( Inv ` C ) = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) | 
						
							| 21 | 2 20 | eqtrid |  |-  ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |