| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | invfval.n | ⊢ 𝑁  =  ( Inv ‘ 𝐶 ) | 
						
							| 3 |  | invfval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | invfval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | invfval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | invfval.s | ⊢ 𝑆  =  ( Sect ‘ 𝐶 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Sect ‘ 𝑐 )  =  ( Sect ‘ 𝐶 ) ) | 
						
							| 10 | 9 6 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Sect ‘ 𝑐 )  =  𝑆 ) | 
						
							| 11 | 10 | oveqd | ⊢ ( 𝑐  =  𝐶  →  ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 )  =  ( 𝑥 𝑆 𝑦 ) ) | 
						
							| 12 | 10 | oveqd | ⊢ ( 𝑐  =  𝐶  →  ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 )  =  ( 𝑦 𝑆 𝑥 ) ) | 
						
							| 13 | 12 | cnveqd | ⊢ ( 𝑐  =  𝐶  →  ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 )  =  ◡ ( 𝑦 𝑆 𝑥 ) ) | 
						
							| 14 | 11 13 | ineq12d | ⊢ ( 𝑐  =  𝐶  →  ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 )  ∩  ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) )  =  ( ( 𝑥 𝑆 𝑦 )  ∩  ◡ ( 𝑦 𝑆 𝑥 ) ) ) | 
						
							| 15 | 8 8 14 | mpoeq123dv | ⊢ ( 𝑐  =  𝐶  →  ( 𝑥  ∈  ( Base ‘ 𝑐 ) ,  𝑦  ∈  ( Base ‘ 𝑐 )  ↦  ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 )  ∩  ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( 𝑥 𝑆 𝑦 )  ∩  ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) | 
						
							| 16 |  | df-inv | ⊢ Inv  =  ( 𝑐  ∈  Cat  ↦  ( 𝑥  ∈  ( Base ‘ 𝑐 ) ,  𝑦  ∈  ( Base ‘ 𝑐 )  ↦  ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 )  ∩  ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) ) | 
						
							| 17 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 18 | 17 17 | mpoex | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( 𝑥 𝑆 𝑦 )  ∩  ◡ ( 𝑦 𝑆 𝑥 ) ) )  ∈  V | 
						
							| 19 | 15 16 18 | fvmpt | ⊢ ( 𝐶  ∈  Cat  →  ( Inv ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( 𝑥 𝑆 𝑦 )  ∩  ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  ( Inv ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( 𝑥 𝑆 𝑦 )  ∩  ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) | 
						
							| 21 | 2 20 | eqtrid | ⊢ ( 𝜑  →  𝑁  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( ( 𝑥 𝑆 𝑦 )  ∩  ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |