Metamath Proof Explorer


Theorem elmpocl

Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypothesis elmpocl.f 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion elmpocl ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → ( 𝑆𝐴𝑇𝐵 ) )

Proof

Step Hyp Ref Expression
1 elmpocl.f 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
3 1 2 eqtri 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
4 3 dmeqi dom 𝐹 = dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
5 dmoprabss dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) } ⊆ ( 𝐴 × 𝐵 )
6 4 5 eqsstri dom 𝐹 ⊆ ( 𝐴 × 𝐵 )
7 elfvdm ( 𝑋 ∈ ( 𝐹 ‘ ⟨ 𝑆 , 𝑇 ⟩ ) → ⟨ 𝑆 , 𝑇 ⟩ ∈ dom 𝐹 )
8 df-ov ( 𝑆 𝐹 𝑇 ) = ( 𝐹 ‘ ⟨ 𝑆 , 𝑇 ⟩ )
9 7 8 eleq2s ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → ⟨ 𝑆 , 𝑇 ⟩ ∈ dom 𝐹 )
10 6 9 sseldi ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → ⟨ 𝑆 , 𝑇 ⟩ ∈ ( 𝐴 × 𝐵 ) )
11 opelxp ( ⟨ 𝑆 , 𝑇 ⟩ ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑆𝐴𝑇𝐵 ) )
12 10 11 sylib ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → ( 𝑆𝐴𝑇𝐵 ) )