Step |
Hyp |
Ref |
Expression |
1 |
|
isisod.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isisod.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isisod.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
isisod.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
5 |
|
isisod.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
6 |
|
isisod.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
7 |
|
isisod.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
isisod.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
isisod.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
|
isisod.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) |
11 |
|
isisod.gf |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) |
12 |
|
isisod.fg |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) |
15 |
14
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
16 |
13
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) ) |
17 |
16
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ↔ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) ) |
18 |
15 17
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) ) ) |
19 |
10 18
|
rspcedv |
⊢ ( 𝜑 → ( ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
20 |
11 12 19
|
mp2and |
⊢ ( 𝜑 → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) |
21 |
3
|
oveqi |
⊢ ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) |
22 |
3
|
oveqi |
⊢ ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) |
23 |
1 2 6 4 7 8 9 5 21 22
|
dfiso2 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
24 |
20 23
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |