| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upeu2lem.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
upeu2lem.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
upeu2lem.o |
⊢ · = ( comp ‘ 𝐶 ) |
| 4 |
|
upeu2lem.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
| 5 |
|
upeu2lem.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
upeu2lem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
upeu2lem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 8 |
|
upeu2lem.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 9 |
|
upeu2lem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 10 |
|
upeu2lem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑍 ) ) |
| 11 |
1 2 4 5 7 6
|
isohom |
⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) ⊆ ( 𝑌 𝐻 𝑋 ) ) |
| 12 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
| 13 |
1 12 5 6 7 4
|
invf |
⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |
| 14 |
13 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐼 𝑋 ) ) |
| 15 |
11 14
|
sseldd |
⊢ ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐻 𝑋 ) ) |
| 16 |
1 2 3 5 7 6 8 15 10
|
catcocl |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ∈ ( 𝑌 𝐻 𝑍 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) → ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) → ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐶 ∈ Cat ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑌 ∈ 𝐵 ) |
| 21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑋 ∈ 𝐵 ) |
| 22 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐻 𝑋 ) ) |
| 23 |
1 2 4 5 6 7
|
isohom |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| 24 |
23 9
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑍 ∈ 𝐵 ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) |
| 28 |
1 2 3 19 20 21 20 22 25 26 27
|
catass |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 30 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 31 |
3
|
oveqi |
⊢ ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) |
| 32 |
1 4 12 19 21 20 29 30 31
|
isocoinvid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) = ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 34 |
1 2 30 19 20 3 26 27
|
catrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = 𝑘 ) |
| 35 |
28 33 34
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = 𝑘 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = 𝑘 ) |
| 37 |
18 36
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) → 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| 38 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) → ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) → ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 40 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐺 ∈ ( 𝑋 𝐻 𝑍 ) ) |
| 41 |
1 2 3 19 21 20 21 25 22 26 40
|
catass |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) ) |
| 42 |
3
|
oveqi |
⊢ ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) |
| 43 |
1 4 12 19 21 20 29 30 42
|
invcoisoid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) = ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 45 |
1 2 30 19 21 3 26 40
|
catrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐺 ) |
| 46 |
41 44 45
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = 𝐺 ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) → ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = 𝐺 ) |
| 48 |
39 47
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) → 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 49 |
37 48
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) |
| 50 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) |
| 51 |
|
reu6i |
⊢ ( ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ∈ ( 𝑌 𝐻 𝑍 ) ∧ ∀ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 52 |
16 50 51
|
syl2anc |
⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |