Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
upcic.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
upcic.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
upcic.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
upcic.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
6 |
|
upcic.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
7 |
|
upcic.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
upcic.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
upcic.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) |
10 |
|
upcic.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
11 |
|
upcic.1 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
12 |
|
upeu2.i |
⊢ 𝐼 = ( Iso ‘ 𝐷 ) |
13 |
|
upeu2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) |
14 |
|
upeu2.n |
⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
15 |
6
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
16 |
1 2 6
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
17 |
16 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
18 |
16 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ 𝐶 ) |
19 |
1 3 4 6 7 8
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
20 |
6
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
21 |
1 3 12 20 7 8
|
isohom |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
22 |
21 13
|
sseldd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
23 |
19 22
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
24 |
2 4 5 15 9 17 18 10 23
|
catcocl |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
25 |
14 24
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → 𝑣 ∈ 𝐵 ) |
28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) |
29 |
26 27 28
|
upciclem1 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ) |
30 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
31 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝐷 ∈ Cat ) |
32 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑋 ∈ 𝐵 ) |
33 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑌 ∈ 𝐵 ) |
34 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑣 ∈ 𝐵 ) |
35 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) |
37 |
1 3 30 31 32 33 34 35 36
|
catcocl |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ∈ ( 𝑋 𝐻 𝑣 ) ) |
38 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝐷 ∈ Cat ) |
39 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑋 ∈ 𝐵 ) |
40 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑌 ∈ 𝐵 ) |
41 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑣 ∈ 𝐵 ) |
42 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) |
43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) |
44 |
1 3 30 12 38 39 40 41 42 43
|
upeu2lem |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) ) → ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) |
45 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) |
46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑣 ) ‘ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) |
47 |
46
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑣 ) ‘ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ) |
48 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
49 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑋 ∈ 𝐵 ) |
50 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑌 ∈ 𝐵 ) |
51 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑣 ∈ 𝐵 ) |
52 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑍 ∈ 𝐶 ) |
53 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
54 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
55 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ) |
56 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
57 |
1 2 3 4 5 48 49 50 51 52 53 30 54 55 56
|
upciclem2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( ( 𝑋 𝐺 𝑣 ) ‘ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
58 |
47 57
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
59 |
58
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) ∧ ( 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) ∧ 𝑝 = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑣 ) 𝐾 ) ) ) → ( 𝑔 = ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ↔ 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) ) |
60 |
37 44 59
|
reuxfr1dd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ( ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑣 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑀 ) ↔ ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) ) |
61 |
29 60
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ) ) → ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
62 |
61
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
63 |
25 62
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) ) |