Step |
Hyp |
Ref |
Expression |
1 |
|
reuxfr1dd.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
2 |
|
reuxfr1dd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
3 |
|
reuxfr1dd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
5 |
2 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
6 |
5
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
7 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) |
8 |
3
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜓 ) ↔ ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜒 ) ) ) |
9 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
10 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ∧ 𝜒 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
11 |
8 9 10
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) ) |
12 |
11
|
rexbidv2 |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
13 |
7 12
|
bitr3id |
⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
15 |
6 14
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
16 |
15
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
17 |
|
reurmo |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
18 |
2 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
19 |
1 18
|
reuxfrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
20 |
16 19
|
bitrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |