Step |
Hyp |
Ref |
Expression |
1 |
|
upciclem1.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) |
2 |
|
upciclem1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
3 |
|
upciclem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
5 |
4
|
reubidv |
⊢ ( 𝑛 = 𝑁 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑍 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
8 |
6
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) = ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ) |
11 |
|
eqidd |
⊢ ( 𝑦 = 𝑌 → 𝑀 = 𝑀 ) |
12 |
8 10 11
|
oveq123d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
14 |
13
|
reubidv |
⊢ ( 𝑦 = 𝑌 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
16 |
15
|
reueqdv |
⊢ ( 𝑦 = 𝑌 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
17 |
14 16
|
bitrd |
⊢ ( 𝑦 = 𝑌 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
18 |
7 17
|
raleqbidv |
⊢ ( 𝑦 = 𝑌 → ( ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
19 |
18 1 2
|
rspcdva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
20 |
5 19 3
|
rspcdva |
⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
24 |
23
|
cbvreuvw |
⊢ ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑚 = 𝑙 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑚 = 𝑙 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑚 = 𝑙 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
28 |
27
|
cbvreuvw |
⊢ ( ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
29 |
24 28
|
bitri |
⊢ ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
30 |
20 29
|
sylib |
⊢ ( 𝜑 → ∃! 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |