Metamath Proof Explorer


Theorem upcic

Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025)

Ref Expression
Hypotheses upcic.b 𝐵 = ( Base ‘ 𝐷 )
upcic.c 𝐶 = ( Base ‘ 𝐸 )
upcic.h 𝐻 = ( Hom ‘ 𝐷 )
upcic.j 𝐽 = ( Hom ‘ 𝐸 )
upcic.o 𝑂 = ( comp ‘ 𝐸 )
upcic.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
upcic.x ( 𝜑𝑋𝐵 )
upcic.y ( 𝜑𝑌𝐵 )
upcic.z ( 𝜑𝑍𝐶 )
upcic.m ( 𝜑𝑀 ∈ ( 𝑍 𝐽 ( 𝐹𝑋 ) ) )
upcic.1 ( 𝜑 → ∀ 𝑤𝐵𝑓 ∈ ( 𝑍 𝐽 ( 𝐹𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑤 ) ) 𝑀 ) )
upcic.n ( 𝜑𝑁 ∈ ( 𝑍 𝐽 ( 𝐹𝑌 ) ) )
upcic.2 ( 𝜑 → ∀ 𝑣𝐵𝑔 ∈ ( 𝑍 𝐽 ( 𝐹𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( ⟨ 𝑍 , ( 𝐹𝑌 ) ⟩ 𝑂 ( 𝐹𝑣 ) ) 𝑁 ) )
Assertion upcic ( 𝜑𝑋 ( ≃𝑐𝐷 ) 𝑌 )

Proof

Step Hyp Ref Expression
1 upcic.b 𝐵 = ( Base ‘ 𝐷 )
2 upcic.c 𝐶 = ( Base ‘ 𝐸 )
3 upcic.h 𝐻 = ( Hom ‘ 𝐷 )
4 upcic.j 𝐽 = ( Hom ‘ 𝐸 )
5 upcic.o 𝑂 = ( comp ‘ 𝐸 )
6 upcic.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
7 upcic.x ( 𝜑𝑋𝐵 )
8 upcic.y ( 𝜑𝑌𝐵 )
9 upcic.z ( 𝜑𝑍𝐶 )
10 upcic.m ( 𝜑𝑀 ∈ ( 𝑍 𝐽 ( 𝐹𝑋 ) ) )
11 upcic.1 ( 𝜑 → ∀ 𝑤𝐵𝑓 ∈ ( 𝑍 𝐽 ( 𝐹𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑤 ) ) 𝑀 ) )
12 upcic.n ( 𝜑𝑁 ∈ ( 𝑍 𝐽 ( 𝐹𝑌 ) ) )
13 upcic.2 ( 𝜑 → ∀ 𝑣𝐵𝑔 ∈ ( 𝑍 𝐽 ( 𝐹𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( ⟨ 𝑍 , ( 𝐹𝑌 ) ⟩ 𝑂 ( 𝐹𝑣 ) ) 𝑁 ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 upciclem4 ( 𝜑 → ( 𝑋 ( ≃𝑐𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑌 ) ) 𝑀 ) ) )
15 14 simpld ( 𝜑𝑋 ( ≃𝑐𝐷 ) 𝑌 )