| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upcic.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
upcic.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 3 |
|
upcic.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 4 |
|
upcic.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 5 |
|
upcic.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
| 6 |
|
upcic.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 7 |
|
upcic.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
upcic.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
|
upcic.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) |
| 10 |
|
upcic.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
| 11 |
|
upcic.1 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
| 12 |
|
upcic.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 13 |
|
upcic.2 |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
| 14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
upciclem4 |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |