Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | ||
upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | ||
upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | ||
upcic.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | ||
upcic.2 | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) | ||
Assertion | upcic | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
2 | upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
3 | upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
4 | upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
5 | upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
6 | upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
7 | upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
8 | upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
9 | upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | |
10 | upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | |
11 | upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | |
12 | upcic.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | |
13 | upcic.2 | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) | |
14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | upciclem4 | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
15 | 14 | simpld | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |