Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
upcic.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
upcic.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
upcic.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
upcic.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
6 |
|
upcic.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
7 |
|
upcic.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
upcic.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
upcic.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) |
10 |
|
upcic.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
11 |
|
upcic.1 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
12 |
|
upcic.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
13 |
|
upcic.2 |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
upciclem4 |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
15 |
14
|
simprd |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
16 |
|
eqid |
⊢ ( Iso ‘ 𝐷 ) = ( Iso ‘ 𝐷 ) |
17 |
6
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
18 |
1 3 16 17 7 8
|
isohom |
⊢ ( 𝜑 → ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
19 |
11 8 12
|
upciclem1 |
⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
20 |
|
reurmo |
⊢ ( ∃! 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) → ∃* 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ∃* 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑋 𝐻 𝑌 ) |
24 |
22 23
|
ssrmof |
⊢ ( ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) → ( ∃* 𝑟 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) → ∃* 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
25 |
18 21 24
|
sylc |
⊢ ( 𝜑 → ∃* 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
26 |
|
reu5 |
⊢ ( ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ( ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ∧ ∃* 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
27 |
15 25 26
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |