Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
upcic.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
upcic.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
upcic.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
upcic.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
6 |
|
upcic.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
7 |
|
upcic.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
upcic.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
upcic.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) |
10 |
|
upcic.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
11 |
|
upcic.1 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
12 |
|
upcic.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
13 |
|
upcic.2 |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
14 |
11 8 12
|
upciclem1 |
⊢ ( 𝜑 → ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
15 |
|
reurex |
⊢ ( ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) → ∃ 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
17 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝜑 ) |
18 |
13 7 10
|
upciclem1 |
⊢ ( 𝜑 → ∃! 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
19 |
|
reurex |
⊢ ( ∃! 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) → ∃ 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → ∃ 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
21 |
|
eqid |
⊢ ( Iso ‘ 𝐷 ) = ( Iso ‘ 𝐷 ) |
22 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
23 |
22
|
funcrcl2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝐷 ∈ Cat ) |
24 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑋 ∈ 𝐵 ) |
25 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑌 ∈ 𝐵 ) |
26 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
27 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
28 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ) |
29 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ) |
30 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑍 ∈ 𝐶 ) |
31 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
32 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
33 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
34 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
35 |
1 2 3 4 5 22 24 25 30 31 32 26 28 29 33 34
|
upciclem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ( 𝑞 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑋 ) 𝑝 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |
36 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
37 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
38 |
1 2 3 4 5 22 25 24 30 36 37 26 29 28 34 33
|
upciclem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ( 𝑝 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐷 ) 𝑌 ) 𝑞 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) ) |
39 |
1 3 26 21 27 23 24 25 28 29 35 38
|
isisod |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
40 |
21 1 23 24 25 39
|
brcici |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |
41 |
20 40
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |
42 |
16 41
|
rexlimddv |
⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |
43 |
20 39
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
44 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
45 |
16 43 44
|
reximssdv |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑝 = 𝑟 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝑝 = 𝑟 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
48 |
47
|
eqeq2d |
⊢ ( 𝑝 = 𝑟 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
50 |
45 49
|
sylib |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
51 |
42 50
|
jca |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |