Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cic.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
cic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
cic.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
cic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
cic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
cic.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
Assertion | brcici | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
2 | cic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | cic.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
4 | cic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
5 | cic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
6 | cic.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
7 | eleq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ) | |
8 | 7 | spcegv | ⊢ ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
9 | 6 6 8 | sylc | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
10 | 1 2 3 4 5 | cic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
11 | 9 10 | mpbird | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |