Metamath Proof Explorer


Theorem brcici

Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020)

Ref Expression
Hypotheses cic.i 𝐼 = ( Iso ‘ 𝐶 )
cic.b 𝐵 = ( Base ‘ 𝐶 )
cic.c ( 𝜑𝐶 ∈ Cat )
cic.x ( 𝜑𝑋𝐵 )
cic.y ( 𝜑𝑌𝐵 )
cic.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
Assertion brcici ( 𝜑𝑋 ( ≃𝑐𝐶 ) 𝑌 )

Proof

Step Hyp Ref Expression
1 cic.i 𝐼 = ( Iso ‘ 𝐶 )
2 cic.b 𝐵 = ( Base ‘ 𝐶 )
3 cic.c ( 𝜑𝐶 ∈ Cat )
4 cic.x ( 𝜑𝑋𝐵 )
5 cic.y ( 𝜑𝑌𝐵 )
6 cic.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
7 eleq1 ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) )
8 7 spcegv ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) )
9 6 6 8 sylc ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) )
10 1 2 3 4 5 cic ( 𝜑 → ( 𝑋 ( ≃𝑐𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) )
11 9 10 mpbird ( 𝜑𝑋 ( ≃𝑐𝐶 ) 𝑌 )