Metamath Proof Explorer


Theorem brcici

Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020)

Ref Expression
Hypotheses cic.i
|- I = ( Iso ` C )
cic.b
|- B = ( Base ` C )
cic.c
|- ( ph -> C e. Cat )
cic.x
|- ( ph -> X e. B )
cic.y
|- ( ph -> Y e. B )
cic.f
|- ( ph -> F e. ( X I Y ) )
Assertion brcici
|- ( ph -> X ( ~=c ` C ) Y )

Proof

Step Hyp Ref Expression
1 cic.i
 |-  I = ( Iso ` C )
2 cic.b
 |-  B = ( Base ` C )
3 cic.c
 |-  ( ph -> C e. Cat )
4 cic.x
 |-  ( ph -> X e. B )
5 cic.y
 |-  ( ph -> Y e. B )
6 cic.f
 |-  ( ph -> F e. ( X I Y ) )
7 eleq1
 |-  ( f = F -> ( f e. ( X I Y ) <-> F e. ( X I Y ) ) )
8 7 spcegv
 |-  ( F e. ( X I Y ) -> ( F e. ( X I Y ) -> E. f f e. ( X I Y ) ) )
9 6 6 8 sylc
 |-  ( ph -> E. f f e. ( X I Y ) )
10 1 2 3 4 5 cic
 |-  ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X I Y ) ) )
11 9 10 mpbird
 |-  ( ph -> X ( ~=c ` C ) Y )