| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cic.i |
|- I = ( Iso ` C ) |
| 2 |
|
cic.b |
|- B = ( Base ` C ) |
| 3 |
|
cic.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
cic.x |
|- ( ph -> X e. B ) |
| 5 |
|
cic.y |
|- ( ph -> Y e. B ) |
| 6 |
|
cic.f |
|- ( ph -> F e. ( X I Y ) ) |
| 7 |
|
eleq1 |
|- ( f = F -> ( f e. ( X I Y ) <-> F e. ( X I Y ) ) ) |
| 8 |
7
|
spcegv |
|- ( F e. ( X I Y ) -> ( F e. ( X I Y ) -> E. f f e. ( X I Y ) ) ) |
| 9 |
6 6 8
|
sylc |
|- ( ph -> E. f f e. ( X I Y ) ) |
| 10 |
1 2 3 4 5
|
cic |
|- ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X I Y ) ) ) |
| 11 |
9 10
|
mpbird |
|- ( ph -> X ( ~=c ` C ) Y ) |