Metamath Proof Explorer


Theorem upciclem3

Description: Lemma for upciclem4 . (Contributed by Zhi Wang, 17-Sep-2025)

Ref Expression
Hypotheses upcic.b 𝐵 = ( Base ‘ 𝐷 )
upcic.c 𝐶 = ( Base ‘ 𝐸 )
upcic.h 𝐻 = ( Hom ‘ 𝐷 )
upcic.j 𝐽 = ( Hom ‘ 𝐸 )
upcic.o 𝑂 = ( comp ‘ 𝐸 )
upcic.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
upcic.x ( 𝜑𝑋𝐵 )
upcic.y ( 𝜑𝑌𝐵 )
upcic.z ( 𝜑𝑍𝐶 )
upcic.m ( 𝜑𝑀 ∈ ( 𝑍 𝐽 ( 𝐹𝑋 ) ) )
upcic.1 ( 𝜑 → ∀ 𝑤𝐵𝑓 ∈ ( 𝑍 𝐽 ( 𝐹𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑤 ) ) 𝑀 ) )
upciclem3.od · = ( comp ‘ 𝐷 )
upciclem3.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
upciclem3.l ( 𝜑𝐿 ∈ ( 𝑌 𝐻 𝑋 ) )
upciclem3.mn ( 𝜑𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( ⟨ 𝑍 , ( 𝐹𝑌 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑁 ) )
upciclem3.nm ( 𝜑𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑌 ) ) 𝑀 ) )
Assertion upciclem3 ( 𝜑 → ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 upcic.b 𝐵 = ( Base ‘ 𝐷 )
2 upcic.c 𝐶 = ( Base ‘ 𝐸 )
3 upcic.h 𝐻 = ( Hom ‘ 𝐷 )
4 upcic.j 𝐽 = ( Hom ‘ 𝐸 )
5 upcic.o 𝑂 = ( comp ‘ 𝐸 )
6 upcic.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
7 upcic.x ( 𝜑𝑋𝐵 )
8 upcic.y ( 𝜑𝑌𝐵 )
9 upcic.z ( 𝜑𝑍𝐶 )
10 upcic.m ( 𝜑𝑀 ∈ ( 𝑍 𝐽 ( 𝐹𝑋 ) ) )
11 upcic.1 ( 𝜑 → ∀ 𝑤𝐵𝑓 ∈ ( 𝑍 𝐽 ( 𝐹𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑤 ) ) 𝑀 ) )
12 upciclem3.od · = ( comp ‘ 𝐷 )
13 upciclem3.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
14 upciclem3.l ( 𝜑𝐿 ∈ ( 𝑌 𝐻 𝑋 ) )
15 upciclem3.mn ( 𝜑𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( ⟨ 𝑍 , ( 𝐹𝑌 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑁 ) )
16 upciclem3.nm ( 𝜑𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑌 ) ) 𝑀 ) )
17 fveq2 ( 𝑝 = ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) ) )
18 17 oveq1d ( 𝑝 = ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) → ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) )
19 18 eqeq2d ( 𝑝 = ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) → ( 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) ↔ 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) ) )
20 fveq2 ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) )
21 20 oveq1d ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) )
22 21 eqeq2d ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) ↔ 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) ) )
23 11 7 10 upciclem1 ( 𝜑 → ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) )
24 6 funcrcl2 ( 𝜑𝐷 ∈ Cat )
25 1 3 12 24 7 8 7 13 14 catcocl ( 𝜑 → ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) ∈ ( 𝑋 𝐻 𝑋 ) )
26 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
27 1 3 26 24 7 catidcl ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) )
28 1 2 3 4 5 6 7 8 7 9 10 12 13 14 16 upciclem2 ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( ⟨ 𝑍 , ( 𝐹𝑌 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑁 ) )
29 15 28 eqtr4d ( 𝜑𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) )
30 eqid ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 )
31 1 26 30 6 7 funcid ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑋 ) ) )
32 31 oveq1d ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) = ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑋 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) )
33 6 funcrcl3 ( 𝜑𝐸 ∈ Cat )
34 1 2 6 funcf1 ( 𝜑𝐹 : 𝐵𝐶 )
35 34 7 ffvelcdmd ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐶 )
36 2 4 30 33 9 5 35 10 catlid ( 𝜑 → ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑋 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) = 𝑀 )
37 32 36 eqtr2d ( 𝜑𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( ⟨ 𝑍 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑋 ) ) 𝑀 ) )
38 19 22 23 25 27 29 37 reu2eqd ( 𝜑 → ( 𝐿 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝐾 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) )