Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
upcic.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
upcic.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
upcic.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
upcic.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
6 |
|
upcic.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
7 |
|
upcic.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
upcic.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
upcic.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) |
10 |
|
upcic.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
11 |
|
upcic.1 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
12 |
|
upciclem3.od |
⊢ · = ( comp ‘ 𝐷 ) |
13 |
|
upciclem3.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
14 |
|
upciclem3.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑌 𝐻 𝑋 ) ) |
15 |
|
upciclem3.mn |
⊢ ( 𝜑 → 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
16 |
|
upciclem3.nm |
⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑝 = ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) → ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑝 = ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) → ( 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ↔ 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ↔ 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) ) |
23 |
11 7 10
|
upciclem1 |
⊢ ( 𝜑 → ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
24 |
6
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
25 |
1 3 12 24 7 8 7 13 14
|
catcocl |
⊢ ( 𝜑 → ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
26 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
27 |
1 3 26 24 7
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
28 |
1 2 3 4 5 6 7 8 7 9 10 12 13 14 16
|
upciclem2 |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
29 |
15 28
|
eqtr4d |
⊢ ( 𝜑 → 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
30 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
31 |
1 26 30 6 7
|
funcid |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
33 |
6
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
34 |
1 2 6
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
35 |
34 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
36 |
2 4 30 33 9 5 35 10
|
catlid |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = 𝑀 ) |
37 |
32 36
|
eqtr2d |
⊢ ( 𝜑 → 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
38 |
19 22 23 25 27 29 37
|
reu2eqd |
⊢ ( 𝜑 → ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |