Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
upcic.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
upcic.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
upcic.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
upcic.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
6 |
|
upcic.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
7 |
|
upcic.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
upcic.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
upciclem2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
10 |
|
upciclem2.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
11 |
|
upciclem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
12 |
|
upciclem2.od |
⊢ · = ( comp ‘ 𝐷 ) |
13 |
|
upciclem2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
14 |
|
upciclem2.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑌 𝐻 𝑍 ) ) |
15 |
|
upciclem2.nm |
⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
16 |
6
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
17 |
1 2 6
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
18 |
17 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
19 |
17 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ 𝐶 ) |
20 |
1 3 4 6 7 8
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
21 |
20 13
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
22 |
17 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) ∈ 𝐶 ) |
23 |
1 3 4 6 8 9
|
funcf2 |
⊢ ( 𝜑 → ( 𝑌 𝐺 𝑍 ) : ( 𝑌 𝐻 𝑍 ) ⟶ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
24 |
23 14
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
25 |
2 4 5 16 10 18 19 11 21 22 24
|
catass |
⊢ ( 𝜑 → ( ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
26 |
1 3 12 5 6 7 8 9 13 14
|
funcco |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐾 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) = ( ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) ) |
28 |
15
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑁 ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
29 |
25 27 28
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑁 ) ) |