Metamath Proof Explorer


Theorem catass

Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catcocl.b 𝐵 = ( Base ‘ 𝐶 )
catcocl.h 𝐻 = ( Hom ‘ 𝐶 )
catcocl.o · = ( comp ‘ 𝐶 )
catcocl.c ( 𝜑𝐶 ∈ Cat )
catcocl.x ( 𝜑𝑋𝐵 )
catcocl.y ( 𝜑𝑌𝐵 )
catcocl.z ( 𝜑𝑍𝐵 )
catcocl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
catcocl.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
catass.w ( 𝜑𝑊𝐵 )
catass.g ( 𝜑𝐾 ∈ ( 𝑍 𝐻 𝑊 ) )
Assertion catass ( 𝜑 → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 catcocl.b 𝐵 = ( Base ‘ 𝐶 )
2 catcocl.h 𝐻 = ( Hom ‘ 𝐶 )
3 catcocl.o · = ( comp ‘ 𝐶 )
4 catcocl.c ( 𝜑𝐶 ∈ Cat )
5 catcocl.x ( 𝜑𝑋𝐵 )
6 catcocl.y ( 𝜑𝑌𝐵 )
7 catcocl.z ( 𝜑𝑍𝐵 )
8 catcocl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
9 catcocl.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
10 catass.w ( 𝜑𝑊𝐵 )
11 catass.g ( 𝜑𝐾 ∈ ( 𝑍 𝐻 𝑊 ) )
12 1 2 3 iscat ( 𝐶 ∈ Cat → ( 𝐶 ∈ Cat ↔ ∀ 𝑥𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥· 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥· 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) ) ) )
13 12 ibi ( 𝐶 ∈ Cat → ∀ 𝑥𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥· 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥· 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) ) )
14 4 13 syl ( 𝜑 → ∀ 𝑥𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥· 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥· 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) ) )
15 6 adantr ( ( 𝜑𝑥 = 𝑋 ) → 𝑌𝐵 )
16 7 ad2antrr ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑍𝐵 )
17 8 ad3antrrr ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
18 simpllr ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑥 = 𝑋 )
19 simplr ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 )
20 18 19 oveq12d ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
21 17 20 eleqtrrd ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) )
22 9 ad4antr ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
23 simpllr ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝑦 = 𝑌 )
24 simplr ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝑧 = 𝑍 )
25 23 24 oveq12d ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) )
26 22 25 eleqtrrd ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ ( 𝑦 𝐻 𝑧 ) )
27 10 ad5antr ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑊𝐵 )
28 11 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) )
29 simp-4r ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝑧 = 𝑍 )
30 simpr ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝑤 = 𝑊 )
31 29 30 oveq12d ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑍 𝐻 𝑊 ) )
32 28 31 eleqtrrd ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝐾 ∈ ( 𝑧 𝐻 𝑤 ) )
33 simp-7r ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑥 = 𝑋 )
34 simp-6r ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑦 = 𝑌 )
35 33 34 opeq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑋 , 𝑌 ⟩ )
36 simplr ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑤 = 𝑊 )
37 35 36 oveq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ⟨ 𝑥 , 𝑦· 𝑤 ) = ( ⟨ 𝑋 , 𝑌· 𝑊 ) )
38 simp-5r ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑧 = 𝑍 )
39 34 38 opeq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ⟨ 𝑦 , 𝑧 ⟩ = ⟨ 𝑌 , 𝑍 ⟩ )
40 39 36 oveq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ⟨ 𝑦 , 𝑧· 𝑤 ) = ( ⟨ 𝑌 , 𝑍· 𝑊 ) )
41 simpr ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 )
42 simpllr ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑔 = 𝐺 )
43 40 41 42 oveq123d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) = ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) )
44 simp-4r ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑓 = 𝐹 )
45 37 43 44 oveq123d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) )
46 33 38 opeq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ⟨ 𝑥 , 𝑧 ⟩ = ⟨ 𝑋 , 𝑍 ⟩ )
47 46 36 oveq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ⟨ 𝑥 , 𝑧· 𝑤 ) = ( ⟨ 𝑋 , 𝑍· 𝑊 ) )
48 35 38 oveq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ⟨ 𝑥 , 𝑦· 𝑧 ) = ( ⟨ 𝑋 , 𝑌· 𝑍 ) )
49 48 42 44 oveq123d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )
50 47 41 49 oveq123d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) )
51 45 50 eqeq12d ( ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ↔ ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
52 32 51 rspcdv ( ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → ( ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
53 27 52 rspcimdv ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
54 53 adantld ( ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
55 26 54 rspcimdv ( ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
56 21 55 rspcimdv ( ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
57 16 56 rspcimdv ( ( ( 𝜑𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
58 15 57 rspcimdv ( ( 𝜑𝑥 = 𝑋 ) → ( ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
59 58 adantld ( ( 𝜑𝑥 = 𝑋 ) → ( ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥· 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥· 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
60 5 59 rspcimdv ( 𝜑 → ( ∀ 𝑥𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥· 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥· 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤𝐵𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( ⟨ 𝑦 , 𝑧· 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦· 𝑤 ) 𝑓 ) = ( 𝑘 ( ⟨ 𝑥 , 𝑧· 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ) ) ) → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) ) )
61 14 60 mpd ( 𝜑 → ( ( 𝐾 ( ⟨ 𝑌 , 𝑍· 𝑊 ) 𝐺 ) ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑍· 𝑊 ) ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) )