| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							catcocl.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							catcocl.h | 
							 |-  H = ( Hom ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							catcocl.o | 
							 |-  .x. = ( comp ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							catcocl.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 5 | 
							
								
							 | 
							catcocl.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							catcocl.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							catcocl.z | 
							 |-  ( ph -> Z e. B )  | 
						
						
							| 8 | 
							
								
							 | 
							catcocl.f | 
							 |-  ( ph -> F e. ( X H Y ) )  | 
						
						
							| 9 | 
							
								
							 | 
							catcocl.g | 
							 |-  ( ph -> G e. ( Y H Z ) )  | 
						
						
							| 10 | 
							
								
							 | 
							catass.w | 
							 |-  ( ph -> W e. B )  | 
						
						
							| 11 | 
							
								
							 | 
							catass.g | 
							 |-  ( ph -> K e. ( Z H W ) )  | 
						
						
							| 12 | 
							
								1 2 3
							 | 
							iscat | 
							 |-  ( C e. Cat -> ( C e. Cat <-> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ibi | 
							 |-  ( C e. Cat -> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							syl | 
							 |-  ( ph -> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) )  | 
						
						
							| 15 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ x = X ) -> Y e. B )  | 
						
						
							| 16 | 
							
								7
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x = X ) /\ y = Y ) -> Z e. B )  | 
						
						
							| 17 | 
							
								8
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> F e. ( X H Y ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> x = X )  | 
						
						
							| 19 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> y = Y )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							oveq12d | 
							 |-  ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( x H y ) = ( X H Y ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> F e. ( x H y ) )  | 
						
						
							| 22 | 
							
								9
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> G e. ( Y H Z ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> y = Y )  | 
						
						
							| 24 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> z = Z )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> ( y H z ) = ( Y H Z ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> G e. ( y H z ) )  | 
						
						
							| 27 | 
							
								10
							 | 
							ad5antr | 
							 |-  ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> W e. B )  | 
						
						
							| 28 | 
							
								11
							 | 
							ad6antr | 
							 |-  ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> K e. ( Z H W ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> z = Z )  | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> w = W )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> ( z H w ) = ( Z H W ) )  | 
						
						
							| 32 | 
							
								28 31
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> K e. ( z H w ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simp-7r | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> x = X )  | 
						
						
							| 34 | 
							
								
							 | 
							simp-6r | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> y = Y )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							opeq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. x , y >. = <. X , Y >. )  | 
						
						
							| 36 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> w = W )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , y >. .x. w ) = ( <. X , Y >. .x. W ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simp-5r | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> z = Z )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							opeq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. y , z >. = <. Y , Z >. )  | 
						
						
							| 40 | 
							
								39 36
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. y , z >. .x. w ) = ( <. Y , Z >. .x. W ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> k = K )  | 
						
						
							| 42 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> g = G )  | 
						
						
							| 43 | 
							
								40 41 42
							 | 
							oveq123d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( k ( <. y , z >. .x. w ) g ) = ( K ( <. Y , Z >. .x. W ) G ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> f = F )  | 
						
						
							| 45 | 
							
								37 43 44
							 | 
							oveq123d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) )  | 
						
						
							| 46 | 
							
								33 38
							 | 
							opeq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. x , z >. = <. X , Z >. )  | 
						
						
							| 47 | 
							
								46 36
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , z >. .x. w ) = ( <. X , Z >. .x. W ) )  | 
						
						
							| 48 | 
							
								35 38
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , y >. .x. z ) = ( <. X , Y >. .x. Z ) )  | 
						
						
							| 49 | 
							
								48 42 44
							 | 
							oveq123d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( g ( <. x , y >. .x. z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) )  | 
						
						
							| 50 | 
							
								47 41 49
							 | 
							oveq123d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) )  | 
						
						
							| 51 | 
							
								45 50
							 | 
							eqeq12d | 
							 |-  ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) <-> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 52 | 
							
								32 51
							 | 
							rspcdv | 
							 |-  ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> ( A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 53 | 
							
								27 52
							 | 
							rspcimdv | 
							 |-  ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> ( A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantld | 
							 |-  ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> ( ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 55 | 
							
								26 54
							 | 
							rspcimdv | 
							 |-  ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> ( A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 56 | 
							
								21 55
							 | 
							rspcimdv | 
							 |-  ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 57 | 
							
								16 56
							 | 
							rspcimdv | 
							 |-  ( ( ( ph /\ x = X ) /\ y = Y ) -> ( A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 58 | 
							
								15 57
							 | 
							rspcimdv | 
							 |-  ( ( ph /\ x = X ) -> ( A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							adantld | 
							 |-  ( ( ph /\ x = X ) -> ( ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 60 | 
							
								5 59
							 | 
							rspcimdv | 
							 |-  ( ph -> ( A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) )  | 
						
						
							| 61 | 
							
								14 60
							 | 
							mpd | 
							 |-  ( ph -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) )  |