Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
|- B = ( Base ` D ) |
2 |
|
upcic.c |
|- C = ( Base ` E ) |
3 |
|
upcic.h |
|- H = ( Hom ` D ) |
4 |
|
upcic.j |
|- J = ( Hom ` E ) |
5 |
|
upcic.o |
|- O = ( comp ` E ) |
6 |
|
upcic.f |
|- ( ph -> F ( D Func E ) G ) |
7 |
|
upcic.x |
|- ( ph -> X e. B ) |
8 |
|
upcic.y |
|- ( ph -> Y e. B ) |
9 |
|
upciclem2.z |
|- ( ph -> Z e. B ) |
10 |
|
upciclem2.w |
|- ( ph -> W e. C ) |
11 |
|
upciclem2.m |
|- ( ph -> M e. ( W J ( F ` X ) ) ) |
12 |
|
upciclem2.od |
|- .x. = ( comp ` D ) |
13 |
|
upciclem2.k |
|- ( ph -> K e. ( X H Y ) ) |
14 |
|
upciclem2.l |
|- ( ph -> L e. ( Y H Z ) ) |
15 |
|
upciclem2.nm |
|- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
16 |
6
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
17 |
1 2 6
|
funcf1 |
|- ( ph -> F : B --> C ) |
18 |
17 7
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. C ) |
19 |
17 8
|
ffvelcdmd |
|- ( ph -> ( F ` Y ) e. C ) |
20 |
1 3 4 6 7 8
|
funcf2 |
|- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
21 |
20 13
|
ffvelcdmd |
|- ( ph -> ( ( X G Y ) ` K ) e. ( ( F ` X ) J ( F ` Y ) ) ) |
22 |
17 9
|
ffvelcdmd |
|- ( ph -> ( F ` Z ) e. C ) |
23 |
1 3 4 6 8 9
|
funcf2 |
|- ( ph -> ( Y G Z ) : ( Y H Z ) --> ( ( F ` Y ) J ( F ` Z ) ) ) |
24 |
23 14
|
ffvelcdmd |
|- ( ph -> ( ( Y G Z ) ` L ) e. ( ( F ` Y ) J ( F ` Z ) ) ) |
25 |
2 4 5 16 10 18 19 11 21 22 24
|
catass |
|- ( ph -> ( ( ( ( Y G Z ) ` L ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) = ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
26 |
1 3 12 5 6 7 8 9 13 14
|
funcco |
|- ( ph -> ( ( X G Z ) ` ( L ( <. X , Y >. .x. Z ) K ) ) = ( ( ( Y G Z ) ` L ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` K ) ) ) |
27 |
26
|
oveq1d |
|- ( ph -> ( ( ( X G Z ) ` ( L ( <. X , Y >. .x. Z ) K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) = ( ( ( ( Y G Z ) ` L ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) ) |
28 |
15
|
oveq2d |
|- ( ph -> ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) N ) = ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
29 |
25 27 28
|
3eqtr4d |
|- ( ph -> ( ( ( X G Z ) ` ( L ( <. X , Y >. .x. Z ) K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) = ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) N ) ) |